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NONLINEAR EFFECTS OF MATERIALS IN LASER CAVITIES 

Raymond H. Hsu 

Abstract 

The concept of adding intensity dependent losses to a laser cavity 

in order to control output pulse shape is reviewed. Background theory 

and models for Kerr liquids using ellipse rotation to achieve these in

ducible losses are developed. Detailed calculations and experiments are 

performed using the liquid crystal MBBA in a ruby laser cavity. The re

sults support the theories and model. The proper choices of parameters 

to optimize the technique is discussed. 

Self focusing inside a laser resonator was found to play an import

ant role in the lasing process. Its effects on laser output were inves

tigated. Three regimes occur. In the weak regime, self focusing can be 

used to improve mode structure and reduce beam divergence. The inter

mediate regime results in inducible loss allowing self focusing to be 

used for pulse shaping. No lasing is possible in the strong regime and 

thus this regime must be avoided. The uses and drawbacks of self focus

ing in a laser resonator are discussed. The interaction between ellipse 

rotation and self focusing and the proper selection of materials and 

parameters to achieve desired laser characteristics are determined. 
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I. INTRODUCTION 

A Kerr liquid typically will exhibit several related nonlinear ef~ 

fects. Two of these effects, ellipse rotation and self focusing, play 

important roles when a Kerr liquid is placed in a laser cavity. Ellipse 

rotation refers to circular birefringence induced by an applied optical 

field. If this field is elliptically polarized, the induced birefrin-

gence will result in a rotation of the polarization state with no change 

in ellipticity. Self focusing refers to an induced gradient in the in~ 

dex of refraction of the liquid due to an applied optical field, which 

then acts as a lens to focus the applied field. 1~ 3 

A liquid crystal consists of long molecules. 4 In the isotropic 

phase, these molecules exhibit a random orientation. Because of the 

large dielectric anisotropy associated with many liquid crystals, an ap-

plied optical field E(w) can induce molecular alignment in the isotropic 

phase. This induced ordering leads to the same nonlinear effects as 

seen in Kerr liquids. These effects have been studied in many liquid 

crystals, including N~[p-methoxybenzylidene]~p-butylaniline (}ffiBA). 3 •5 •
6 

See Fig. 1 for molecular structure of ~1BBA. 

Because of the similarity in effects seen in Kerr liquids and MBBA, 

it is customary to refer to MBBA as a Kerr liquid. It is important, 

however, to keep in mind the difference in both response time and tem~ 

perature dependence for MBBA as compared to the typical Kerr liquid. 

Since the nonlinear effects being studied arise from molecular ordering 

in MBBA, 2 the phase transition from the isotropic to the nematic phase 

* at T = 314.7°K becomes critical. As will be seen in Section II, the 

induced anisotropy in the index of refraction on will exhibit a critic-

1 



1c 
ally divergent behavior as T + T : 

on 

* where C is a constant and T is the critical temperature for a second 

(1) 

order isotropic + nematic transition in the mean field approximation. 

Similar divergent behavior results in both the relaxation time T (~ lO~S 

seconds) and the nonlinear constants for JI1BBA being larger than in an 

ordinary Kerr liquid (T- 10-ll seconds). This behavior is especially 

* 7 pronounced near T = T . 

Kerr liquids were first used in a laser cavity for mode locking by 

8 Comly et aL 

Kerr liquid. 

They used a-chloronaphthalene and nitrobenzene as the 

. 9 
As predicted by an earlier theoretical calculatlon, 

mode locking was only seen for relaxation time.s 

T ~ 1/ (L!.v) . (2) 
ga1n 

where (L!.v) is the gain linewidth for the laser. Physically, this says 

that the Kerr liquid must be able to respond to the beat frequencies 

resulting from any of the modes lying within the gain envelope, a rea-

sonable requirement for full mode locking. The authors also reported 

an improvement in the quality of output as compared with mode locking 

with a saturable absorber. This improvement was attributed to the de-

crease in formation of filimentary structure in the laser output. The 

mode locking referred to above is longitudinal mode locking where the 

various longitudinal cavity modes (mode spacing is given by L!.w = c/2£ 

where £ is the laser cavity length) have their phases locked to each 

2 



other -- hence the term mode locking. The result of this mode locking 

in frequency space manifests itself in the time domain as a train of 

pulses whose width~ 1/(~v) . and whose separation~ 2£/c. Very short 
ga1n 

pulses can be obtained in this fashion making the technique highly use~ 

ful.lO 

Dahlstrom made use directly of the nonlinear effects of Kerr li-

quids by using ellipse rotation to couple part of the laser cavity 

f . ld f h . 11 1e s out o t e cavlty. His work was motivated by a need for an 

output coupler to be used in resonators where prisms have replaced the 

usual mirrors. Such a resonator eliminates the problem of minor damage 

due to the high powers present in a mode locked train of pulses. The 

techniques use the ellipse rotation induced by the cavity fields to 

change the polarization state of the cavity fields. A glan prism polar-

izer was then used to couple out the cavity fields. At low cavity in-

tensities, little ellipse rotation is induced, resulting in only a small 

change in polarization state and small output coupling, At large inten-

sities, the ellipse rotation becomes substantial, leading to a large 

change in polarization state and a correspondingly large output coupling. 

By appropriate changes in optical components, Dahlstrom was able to cou-

ple out the one or two largest pulses in the mode locked train, thus 

demonstrating a passive switching technique for obtaining single pico-

second pulses. Other configurations allowed the entire mode locked 

train to be coupled out. 

Cavity dumping is a process for extracting the cavity energy quick-

ly. Typically, cavity dumping is achieved by starting with a Q-switched 

laser with very small output coupling, waiting until the cavity fields 

reach a maximum and then introducing large output coupling. In the ex-

3 



treme case the cavity energy is "dumpedii in one round trip time of the 

cavity. 12 Most techniques involve active switching and are subject to 

jitter it being hard to predict precisely when the cavity fields will 

peak. Examination of Dahlstrom's set~up reveals that his technique 

should also have application as an intensity dependent passive cavity 

dumping scheme. Indeed, Dahlstrom recognized this and successfully 

demonstrated the effect.~3 He obtained cavity dumped output energies of 

15%~50% of the non cavity dumped output energies, with pulse lengths 4~ 

10 times shorter for the cavity dumped output. This technique offers 

greater simplicity by virtue of its passive nature, and greater freedom 

from jitter by virtue of the. intensity dependence which uses the actual 

cavity intensities to control the dumping. 

A thorough theoretical treatment for using the ellipse rotation of 

Kerr liquids in laser cavities has been done and experimentally test

ed.14 One application is the use of the ellipse rotation to generate 

an inducible loss in the cavity. An inducible loss is one for which the 

loss increases nonlinearly with incident intensity -- the counterpart to 

a saturable absorber. 

Work has been done, initially by using 2 photon absorption as the 

inducible loss15 and later using ellipse rotation in liquid crystals as 

the inducible loss, 16 showing that the introduction of an inducible loss 

into a slowly Q-switched laser cavity results in pulse durations that 

vary with the pump power while the pulse intensity remains constant. A 

rotation prism (at 400 Hz) was used as the Q-switching device. It 

should be pointed out that this is so slow as to be nearly free run~ 

ning. 17 Faster Q-switching leads to complications which will be dis

cussed below. As in the free running case, the laser output energy in-

4 



. h h 18 creases wlt t e pump energy. The inducible loss acts to limit cavity 

intensities and thereby forces the extra output energy to appear in the 

form of a longer pulse -- hence the increase in pulse duration with pump 

energy. 

It has been suggested that combining an inducible loss with a sat-

urable absorber Q-switch could lead to clamping of the laser output in-

. . d . d 1 1 19 tensltles at a pre etermlne eve . The saturable absorber determines 

the lowest allowed cavity intensity and the inducible loss determines 

the highest. This has obvious applications. Saturable absorber Q-

switching is a fast Q-switch, however, with laser pulse behavior differ-

ent from that seen with slow Q-switching. With fast Q-switching the la-

18 
ser output energy does not depend strongly on pump energy. This char-

acteristic remains when an inducible loss is added to the cavity and the 

pulse duration is independent of pump energy, though longer than the 

case where no inducible loss is present. 20 These differences resulting 

from differences in Q-switching technique prompted a thorough theoreti-

cal examination of how the Q-switching speed, inducible loss mechanism 

and laser gain media coupled together. 21 The results indicate that 

though the output energy does not vary with pump power, it is still pos-

sible to increase pulse duration by clamping the cavity intensities at a 

suitably low level-- essentially releasing the energy more slowly. 

Because it is not possible to use pump energy to vary the pulse 

length with saturable absorber Q-switching, another means of easily 

varying the pulse length is needed. Ellipse rotation inducible loss is 

attractive because the amount of loss is easily changed by changing the 

configuration of the set-up without a need to change the nonlinear ma-

terial. Liquid crystals as the nonlinear material are an obvious choice 

5 



both for their large nonlinear constants and the ability to vary these 

* constants near T = T , the isotropic~nematic phase transition. In this 

work, the liquid crystal MBBA is placed in the cavity as the inducible 

loss material. It is found that a new loss mechanism, self focusing in 

the laser cavity, predominates over the inducible loss. This process of 

self focusing in the laser cavity is carefully studied and close agree~ 

ment with theory is found. 

In Chapter II, some background theory is presented. Chapter III 

discusses the theory of ellipse rotation inducible cavity loss. Chapter 

IV presents a qualitative model of self focusing in a laser cavity and 

discusses how this leads to inducible cavity loss and improvement of 

cavity mode structure. Experimental results are presented in Chapter V 

and analyzed in Chapter VI. Finally, conclusions are drawn in Chapter 

VII. 

6 



II. BACKGROUND THEORY 

A. Liquid Crystals 

The behavior of liquid crystals in the isotropic phase near the 

isotropic-nematic phase transition is referred to as pretransitional be-

havior. 2 22 This behavior has been carefully measured for HBBA ' and 

23 other liquid crystals. The results obtained agree well with the Lan-

dau-de Gennes model based on Landau's theory of second order phase tran

sitions.24 What follows is a brief description of this model, 

As emphasized by de Gennes, any tensorial property of the liquid 

crystal may be used to define an order parameter. (An order parameter 

indicates the degree of alignment of the molecules.) It is convenient 

to use optical susceptibilities to define the order parameter Q ... lJ 

(3) 

1 
X = -3 Z .. X (4) 

l ii 

where 6x is the anisotropy in x .. with perfect molecular alignment, The 
lJ 

free energy per unit volume in the isotropic phase (Q .. all small) can 
lJ 

be written as 

F 

1 * --8 X· .(w)[E.(w)E.(w) + c.c.] 
lJ l J 

(5) 

where F is independent of Q .. , and A, B, Dare constants. 
0 lJ 

7 



Landau assumes the constants B and D vary slowly with temperature 

* when compared with the constant A. Above the phase transition (T > T ) 

the minimal free energy must occur at Qij = 0 (no applied field), since 

* the material is isotropic. Below the phase transition (T < T ) the min~ 

imal free energy must occur at some finite value for Q .. (again, no ap
lJ 

plied field), since the material is in the nematic phase. Figure 24 

shows some typical free energy curves for a liquid crystal where the 

third order term is absent (B = 0). The case where B 0 is similar and 

shown in Fig. 3. 4 The important feature to recognize is that A must 

* change sign at T = T in order for the minimum in F to shift away from 

* Q .. = 0 for T < T 
lJ 

must have the form 

* while still remaining at Q .. = 0 for T > T • 
lJ 

A * a(T ~ T ) 

which is how Figs. 2 and 3 were obtained. 

(6) 

Of interest is the middle curve for Fig. 3. There a second stable 

state has appeared at a finite value of Q ... One would expect that 
lJ 

fluctuations would play a major role in the phase transition dynamics in 

the presence of such a state. This is indeed so and the Landau theory 

does not adequately handle this situation, However, in most liquid 

crystals, the temperature at which this meta stable state first occurs 

0 * is < 1 C above T . At temperatures higher than this, the Landau theory 

works quite well. 

Thus one expects in the isotropic state that the Q .. will be suffi~ 
lJ 

ciently small so that the Q~~) and Q~~) terms in Eq. (5) can be neglect-
lJ lJ 

* ed for temperatures far enough above the critical temperature T . The 

8 



steady state value of Q .. induced by the field can be obtained using Eq. 
1.] 

(3) and minimizing the free energy F with respect to the Q .. for Eq. (5). 
1.] 

We make use of the fact that Qij is symmetric (QaB = QBa) and traceless 

B, we have 

(7) 

while for a = 8, we have 

(8) 

(9) 

where the fact that only two of the Q .. are independent has been used. 
1.1. 

We can solve Eqs. (7)-(9) to get 

Q .. 
1.] 

f .. 
1.] 

* a(T - T ) 

1
3 

jE(w)j
2

o .. ) + c.c.]. 
lJ 

(10) 

(11) 

A 

For linearly polarized light, with the polarization along x, Eq. (11) 

reduces to 

- 2Q zz 
Llx!E(w)j

2 

* 9a(T - T ) 
(12) 

The induced anisotropy in the index of refraction on is then given by 

9 



on 
2n 

0 n- x ~ (l !:, )cq Q ) n 3 X XX - yy 

n * 9a(T - T ) 
(13) 

where ox = xxx ~ xyy is the induced anisotropy in the optical suscepti~ 

bility. This is the result claimed for Eq. (1). 

For a sufficiently short optical pulse, the order paraBeter will 

not be able to respond instantaneously, The dynamic equation governing 

this transient response can be obtained as 

dQaS + _11:_ 4 af 2 v = I: J\Q, aq- (14) 
dt oQBa 2=1 Sa 

fl = Q12 - Q21 = 0 

(15) 

where we have used the standard technique of Lagrange multipliers to 

treat the fact that not all the Q .. are independent. v is a viscosity 
~J 

coefficient. Substituting for F and treating all the Q .. as independent 
~J 

when taking the derivatives (since we have accounted for any dependence 

via the Lagrange multipliers), we get for a B 

10 



11 

dQai3 '" ~~ * v "dt + a(T ~ T )Q [Ea(w)E
13

(w) + c.c.] "" A 
aS 12 

dQSa * ~~ * v ~- + a(T - T )Qi3a [E
13 

(w)Ea (w) + c.c.] = ~ A. (16) dt 12 

Since QaS "" Qi3a this clearly means A 0. For a 13 we get 

dQ 'i~ ~Qx 2 
v _11_ + a(T - T )Q11 jEl (w) I A 

dt 6 

dQ22 * -~ 2 
v "dt + a(T - T )Q22 IEz(w)l = A 6 

dQ33 * _Qx 2 
v "dt + a(T - T )Q33 jE3(w)l "' A. (17) 

6 

We eliminate A to get the equation of motion for Q 
a a 

Equations (16) and (18) can be combined as 

dQ .. 
v d~J + a(T * T )Q .. "' f.. 

lJ lJ 

- ~ * 1 2 f .. - 12 [(E.(w)E.(w)- -3 jE(w)j cS •• ) + c.c.]. (19) 
lJ l J lJ 

The solution to Eq. (19) is immediate: 

l
t f .. (t') -(t-t')/TH 

lJ e dt' 
00 v 

(20) 



v 

* a(T - T ) 
(21) 

where 1
1 

is the orientational relaxation time. The ratio v/a has been 

well measured for MBBA and the results for TM are shown in Fig. 4,
2 

and 

Table 1. 

The connection of these liquid crystal parameters to the third ord-

er nonlinear susceptibility tensor is made in the next section of this 

chapter. 

B. Third Order Optical Susceptibilities in Isotropic Liquid Crystals 

The optical susceptibilities used in the first part of this section 

have been measured quite accurately for MBBA. 2 •22 To make use of these 

measurements, it is necessary to relate the optical susceptibilities to 

the underlying nonlinear susceptibility tensor. The polarization P of 

the material may be expanded in a power series 

p = P(O) + P(l) + P(2) + P(3) + ... 

(22) 

For media with inversion symmetry,only the odd terms will be nonzero. 

P(l) is the linear term used in classical optics. p(J) is the lowest 

order nonlinear term, and gives rise to the nonlinear phenomena mention-

ed in Chapter I. 

Since the applied field is quasimonochromatic, it is convenient to 

+ + 
work with the Fourier decomposition of P and E, in which case 

12 



(3) 
6x. 'kn (w :lJ J0 0 

(23) 

where Xijk£(w
0 

= w1 + w2 + w3) is the third order susceptibility and 

where by convention, the factor of 6 is explicitly retained. This fac-

tor of 6 comes from the expansion of 

where the omitted terms do not give the proper frequency response for 

the polarization. The x~~~£ is the symmetrized x defined by Maker and 

Tehrune. The decision to use the symmetrized x, retaining the explicit 

degeneracy factor means that as the frequencies w
1

, w
2

, w
3 

become degen-

erate, this factor of 6 is replaced by 3(w
1 

= w
2 

) Of th (3) . 25 Th h · · h w3 · course, e Xijk£ are cont::Lnuous. oug :1t 1s per aps un-

wieldly to require a different definition of x for the different cases 

of degeneracy, the benefits of permutation symmetry (due to the symme-

trized x) and consistency between the time and frequency domains more 

26 than compensates. 

Of course, the susceptibility tensor must obey the symmetry proper-

ties of the material. For isotropic media, there are only 21 nonzero 

elements in the susceptibility tensor, only 3 of which are independent: 7 

These nonvanishing elements are 

x .... (6 elements) 
UJJ 

cont'd 

13 



= X~ Q •• (6 elements) 
lJlJ 

x .... (6 elements) 
lJJl 

xl212 + xll22 + xl221 (3 elements). 

For the case where w
1 

w
2

, then by permutation symmetry 

(3) 
X .... (w = wl + wl + w2) 
llJJ 0 

(3) 
X .... (w = wl + wl + w2). 
lJ lJ 0 

(25) 

(26) 

This reduces the number of independent elements to two which are by con~ 

vention x1122 and x1221 . Note that this convention requires we write 

the frequencies in the order w
0 

= w
1 

+ w
1 

+ w
2

. 

w
3

) can thus be written 

(27) 

where o .. = 1 if i = j and 0 otherwise. The situation of interest is 
lJ 

that of self induced nonlinear effects where (w = w + w- w). Then 
0 

(3) 
3xijk£(w 

ox .. (w,w)E. (w). 
lJ J 

(28) 

(29) 

Equation (29) is of course the definition for the induced optical sus~ 

ceptibility ox .. (w,u.1), which can be rewritten 
lJ 

14 



ox .. (w,w) 
lJ 

(30) 

The xijk£ of Eq. (28) can be expressed in terms of the Born Oppenheimer 

26 
coefficients a, A , B as defined by Hellwarth. a is the electronic 

0 0 

contribution, while A and B are the nuclear contributions to x( 3). 
0 0 

Roughly speaking, A represents the isotropic contribution and B the 
0 0 

anisotropic contribution. 

12x1221 (w w + w - w) 

X1212(w w + w - w) 

a + 2A + B 
0 0 

a + 2B • 
0 

w + w - w) (31) 

where we have used the symmetry properties of x(J) (Eqs. (25) and (26)). 

The induced optical susceptibility then takes the form 

ox .. (w,w) 
lJ 

= 3[2x1122 Cw 

+ x1221 (w * = w + w- w)E.(w)E.(w)]. 
J l 

The anisotropic part of the ox .. (w,w) is immediately 
lJ 

* = w + w- w)E.(w)E.(w). 
J l 

(32) 

(33) 

For pulsed lasers, it is necessary to include the time response of the 

material. If the field E is given by 

15 



(34) 

then the convoluted form for Eq. (33) becomes 

t 

oxij(w,w,t)A 1 3X1221 (w = * w + w ~ w;t- t')E.(w,t')E.(w,t')dt'. 
J l 

'-00 

(35) 

For liquid crystals the electronic contribution to x( 3) is negligible
2 

so we have a ~ B and combining Eqs. (3) and (20) 
0 

Comparing Eq. (35) to Eq. (36) with a = 0 gives 

(3) 
w + w - w; t) = _s_ e 

-t/TH 
3X1221 (w = 

2TM 

s = 
2(L'Ix)2 

= B 
* 

. 
9a(T - T ) 0 

(37) 

Now the connection has been established between the liquid crystal para-

meters and the nonlinear susceptibility tensor. The values of S and TH 

2 have been measured for MBBA. They are given in Eq. (38) for conven-

ience. 

s = 
2.7 X 10-9 

T -
(esu) 

2800/T 
e sec (38) 

where the viscosity v takes the form suggested by Stinson and Litster28 

16 



v = v e 
0 

W/T 

(39) 

where B is replaced by S to provide consistency with other works on the 
0 

b . t 1,2,22,23 su Jec . 

Examination of the isotropic portion ox .. in Eq. (32) and compari
lJ 

son with the isotropic part of ox .. obtained from Eqs. (3) and (20) 
l] 

gives 

For liquid crystals where 0 = 0, this means 

a = A = - S/3 
0 

where again the a replaces the A for consistency. 
0 

C. Self Induced Ellipse Rotation (SIER) 

(40) 

(41) 

Having determined the liquid crystal parameters in terms of the non-

linear susceptibility tensor, it remains to determine the size of the 

expected SIER and self focusing for later use. The expressions involved 

may be derived from either the nonlinear susceptibility tensor1 •2 or di-

1 f h . 1 'b'l' 23 rect y rom t e opt1ca suscept1 1 1ty x ..• 
lJ 

The use of optical sus-

ceptibilities directly is simpler and followed here. Using the nonlin-

ear susceptibility tensor would give the same results. 

The f .. of Eq. (19) have been chosen for i,j = x,y,z. The corres
lJ 

17 



ponding f .. for i,j 
l] 

A A 

= e+' e z where 

e = .1:_ ex + iy) 
+ 12 

A 

e 
1 = - ex - iy) 
12 

are obtained by applying the transformation tensor 

cf + 
f + i(f - f )] ~ [f - f - i(f + 

XX yy xy yx XX YY xy 

= ~ [f - f + i(f - f )] ~ [f + f - i(f -
XX YY xy yx XX yy xy 

0 0 

f ) ] 
yx 

fy)] 

For ellipse rotation the incident field is elliptically polarized 

where &(x,y,t) is the pulse envelope. 

1 

Then the f .. 
lJ 

are 

18 

(42) 

(43) 

'f:) 
zz 
(44) 

(45) 



1,.,12 * * 
~ + E E + E E 

3 +- - + 

0 

and the corresponding f .. is 
l] 

l IEI
2 * 2E_E+ 3 

f .. = D.x 2E_E: l IEI
2 

lJ 12 3 

0 

0 

0 0 _l IEI 2 
3 

0 

0 

(46) 

l&(x,y,t) 1

2 

(47) 

The corresponding x .. is then (where
lJ 

refers to circular coordinants) 

liEI
2 * 2E_E+ 0 

(D.x) 2 
3 -(t-t')/T -- * 1 1EI

2 it 1 M 
xij xo .. + 

* 
2E_E+ 0 -e 

lJ 18a (T - T ) 3 _oo 'M 

0 0 -}IEI
2 

x I & (x' y • t I ) 12 d t I • (48) 

The polarization induced is 

P±(w,t) = l.l-x + (!J.x)z * g(t)] + 
54a(T - T ) 

1 t 2 -(t-t')/TH 
g(x,y,t) =-- ~ l&(x,y,t') I e dt' 

'M J.oo 
(49) 

The terms have been written in a form that separates the field polariza-

19 



tion dependent part from the field polarization independent part for 

P±(w,t). We get immediately from the field polarization dependent term: 

g( t). 

The corresponding circular birefringence is 

on 
2'Tf 

(ox - ox ) c n + 

2'Tf (fl.x) 2 
= n ,·~ 

9a(T - T ) 

Using Eq. (37) this reduces to 

on 
c 

2 
g(t)(jE+I -

(50) 

IE 12]. (51) 

(52) 

The phase shift induced between the e+ and e_ polarizations is given by 

d~/dz = on w/c. Thus the ellipse rotation angle 8 is given by 
c 

de -= 
dz 

w on 
2c c 

(53) 

where e is the angle through which the elliptical polarization is rotat-

ed by the material. 

Actual values for d8/dz require that the field be specified, For 

many cases the applied field is a laser pulse that can be approximated 

by a Gaussian 

&(x,y,t) & 
0 

2 2 
-r /r.v 

e (54) 
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where 

r =~x2 +y2 

b = [1/e width of Gaussian time profile (intensi.ty))-l 

w = 1/e width of Gaussian spatial field distribution. 

The expression for g(x,y,t) defined in Eq. (49) becomes 

1 
g(x,y,t) = 

2 2 -2r /w 
e 

- 2b~Ml} • (55) 

This will be evaluated further when the actual laser intensities can be 

specified. 

D. Self Focusing in Liquid Crystals 

In any Kerr liquid, it is always important to consider the process 

of self focusing. Liquid crystals with their enhanced nonlinear coeffi-

cients are particularly susceptible to self focusing. Under most cir-

cumstances, this concern is primarily one of eliminating the self focus-

ing, thereby avoiding the damage or breakdown that frequently accompan

ies it. 3 However, work with transient self focusing, where the duration 

of the applied field ~ the response time of the material, has shown that 

h lf f . d b h" 5 •6 t e se ocus1ng process nee not e catastrop 1c. We will examine 

self focusing for MBBA in a ruby laser cavity in Chapters IV-VI. In 

this section, the basic theory of transient self focusing is described, 

and an expression for the effects of self focusing is determined for the 
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weak focusing limit. 

In the fully transient limit (duration of laser pulse T ~response 
p 

time of the material T ), it was found that an input laser pulse evolves 
m 

as it propagates into a characteristic horn shape, which then can con~ 

5 tinue to propagate for long distances, essentially unchanged. The ac~ 

tual shape the horn takes is determined by the total power present in 

the pulse. The amount of material the pulse must travel through to at-

tain this shape depends on pulse intensity. And the distance the horn-

shaped pulse will travel without appreciable change is approximately a 

diffraction length of the original unfocused pulse. For a given pulse 

intensity and total power, there is a corresponding minimum length of 

material needed for the pulse to deform completely to the horn shape. 

For cells longer than this minimum length, the output will depend only 

weakly on cell length, while for cells shorter than this minimum, the 

output will depend strongly on cell length. This can be seen graphical-

ly in Fig. 5. The evolution of the pulse as it deforms to the horn 

3 shape is seen in Fig. 6 (from Shen ). 

The limiting beam radius seen in Fig. 5 depends on power available 

in the pulse. This limiting beam radius occurs at the neck of the horn, 

and its value represents the beam size where the increased diffraction 

(due to the smaller beam size) is able to compensate for the induced fo-

cusing. For a given pulse power, this balance between diffraction and 

induced focusing occurs at a specific beam radius. As the available 

power increases, the intensity for a given radius increases. The in-

creased intensity results in greater induced focusing so this limiting 

beam radius decreases. The decrease of limiting beam size with in-

creased power is ultimately limited by the onset of competing nonlinear 
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processes, such as two-photon absorption, Brillouin scattering or Raman 

scattering. These competing processes work by depleting the power as 

the beam focuses, maintaining the pulse intensity at a level near the 

threshold for the particular process. Since the focused pulse intensity 

determines the induced focusing, the limiting beam size will be deter

mined by the lowest threshold intensity of these competing processes. 

Of course, the pulse power must be great enough for the focused pulse 

intensities to reach the threshold to see this effect. Figure 7 shows 

the behavior of the limiting beam radius as a function of pulse power. 

PCR is the theoretical steady state power at which self focusing should 

first become observable. 

The quasi-transient situation (Tp ~ TM) resembles the fully transi

ent case. Qualitatively, the behavior is described by the picture pre

sented above for the fully transient limit and need not be repeated. 

The only qualitative difference between the fully transient and quasi

transient self focusing lies in the characteristic horn shape where the 

neck region develops the flared shape seen in Fig. 8. 6 This flaring be-

comes more noticeable as Tp ~ TM. 

A complete solution for the self focusing problem is quite compli

cated, and has not been done analytically. To solve the problem, ap

proximations must be made. For weak self focusing, the problem becomes 

considerably more tractable than for the full blown case. Referring to 

Fig. 5, it is clear that for small enough cell lengths, the output beam 

radius will not differ substantially from the input radius. With low 

input pulse intensities, the cell length can be quite large before ap

preciable change in beam radius is seen at the output. Under these con

ditions, it is possible to ignore the spatial redistribution of fields 
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that complicates the full self focusing calculation. One can then cal~ 

culate the induced on seen by the pulse. Naturally, the induced on is 

not uniform but will depend on the spatial variation of the input pulse 

in the plane normal to the direction of propagation. Below we calculate 

this on and estimate its effects on the inducing pulse. The notation 

used has been introduced in Sections IIA and liB and the approach is 

similar to that used in Section IIC. 

We assume an input field of the form 

E(r,t) = &(x,y,t)eikz-iwt x (56) 

where &(x,y,t) contains the spatial variation of the fields in the x,y 

plane and the slowly varying time envelope for the pulse. The nonzero 

f .. (x,y,t) for Eq. (19) are then 
l] 

f (x, y, t) 
yy 

(x,y,t) 
z 

The resulting x .. are then by Eqs. (3) and (20) 
l] 

X (x,y,t) 
XX 

- 2 it 1'1x 2 -(t-t')/TM 
X+ -

3
(L.x) [&(x,y,t') [ e dt' 

_
00 

9v 

(57) 

(58) 

(59) 

X (x,y,t) 
yy 

-(t-t')/T 
JDL [&(x,y,t')[

2 
e M dt' .(60) 

18v 

Since only the X polarization is present, the relevant on is 
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21T 
on(x,y,t) = ~ oxxx(x,y) 

2 
41T(Lix) 

27vn 
rt 2 

lex: l&(x,y,t')l 
_oo 

7 
-(t-t')/TM 

e dt' 

21T 
= 

3
n Sg(x,y, t) (61) 

where the definition of S in Eq. (37) has been used. The g(x,y,t) is 

that of Eq. (49), reproduced here for convenience 

g(x,y,t) 1 rt I 12 ,
11 

J..JX) &(x,y,t') 
-(t-t')/TM 

e dt'. (62) 

The value of g(x,y,t) for a single mode pulse is given by Eq. (55). 

The effect of the induced on (Eq. (59)) is to change the phase ve-

locity of the various sections of the pulse wavefront, producing distor-

tions. These distortions are shown in Fig. 9, exaggerated for clarity. 

The shape of the distorted wavefront can be calculated from the phase 

velocity of each section. £ is the length of material passed through. 

c/n (63) 

after the pulse has left the material, the edges of the wavefront will 

lead the center. We define o(x,y) as the position of the wavefront 

along the z axis. 8 will be this position for the center of the wave
a 

front. We have with r =~x2 + y
2 , using Fig. 10, 

tn(r = 0) + 8 
0 

£n(r) + o(r) (64) 
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where we have assumed air (n = 1) outside the self focusing material. 

This of course reduces to 

o(r) ~[n(O) - n(r)] + 8 • 
0 

(65) 

It is clear from Eqs. (61) and (62) that a converging Gaussian wavefront 

is formed. The optics of a Gaussian beam profile with a Gaussian wave-

front are complicated. We use the paraxial approximation to simplify 

the calculation. With this approximation, we replace the Gaussian wave-

front with a parabolic wavefront while retaining a Gaussian beam profile. 

Since o(r) is given by Eq. (65), the paraxial approximation is equiva-

lent to replacing the Gaussian on profile with a parabolic profile 

2 2 
on(r) = on(r = O)e-2r /w 

where w is the 1/e width of the incident Gaussian beam. 

(66) 

Propagation of Gaussian beams through quadratic index media can be 

described using the so-called "ABCD matrices." 29 Propagation of Gaus-

sian beams and use of the ABCD matrices are discussed in the following 

section. For future reference, we give here the ABCD matrix for the 

parabolic index media (Eq. (66)), which is a special case of quadratic 

. d d. 29 ln ex me la. 
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( 2t ~ on(O) ) 
cos -;- n + on(O) 

Y!_
2 

In + on (O) sin /22 I 8n(O) ) 
"\J on(O) \w "\In+ on(O) 

2 I on(O) . (2t I on(O) ) 
; "\/ n + 8 n ( 0) s m w Vn + 6 n ( 0) ( 2£ ~ on(O) ) 

cos -;- n + on (O) 

(6 7) 

Here n is the index of refraction for the ~ffiBA with no applied field. 

E. Laser Cavity Theory 

Sections IIA-IID have given needed background theory for the liquid 

crystal. In this section, some laser cavity theory will be presented. 

We begin with a discussion of the laser rate equations and progress to 

mode selection and cavity losses. A working knowledge of laser systems 

and terminology is assumed. For a review of these subjects see Ref. 18 

or similar works. 

The treatment of laser rate equations will be directed towards a 

three level system such as the ruby laser. A four level laser system is 

similar, and the extension is straightforward. The three level laser 

energy level diagram is seen in Fig. 11, along with the definition of 

certain parameters. The lifetime T
32

. is very short compared with T21 so 

the total population density is 

(68) 

For a working three level laser, the physical situation can be viewed as 

a two level system since the decay from state 3 to state 2 is so rapid. 

The dynamics of such a system is described resonably by a set of coupled 
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. 18 rate equatlons. 

ov~ a,-1 
--=---
dt at 

(69) 

where ~ is the photon density, a is the stimulated emission cross sec-

tion, T is the average photon lifetime in the cavity, S is the spon
c 

taneous emission contribution to ~. and W is the effective pump rate 
p 

given by 

T 

w = w 
p T31 + T32 13 

(70) 

which takes into account the loss of pump efficiency due to decay from 

the pump band back to state 1. From Eq. (69) it is clear that the re-

levant parameter is not url or ur2 but the density of population inver

sion ,/#'where 

(71) 

The Eq, (69) then becomes 

,/1'+,/Y (g2/ ) 
___ t_o_t __ _;:;;_ + w ( ur -,./#') 

T21 p tot 

l1 = c~aur- _j_ + s. at T 
(72) 

c 
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These laser rate equations are used to determine general laser output 

features such as average and peak power, pulse envelope shapes, thresh~ 

old conditions, etc. Detailed spatial, spectral, and temporal struc~ 

ture determinations must rely on other techniques. Except for a full 

two or three dimensional finite difference calculation (or its equiva

lent) these other techniques sacrifice the determination of general 

features to determine the specific details. 

Some approximations are made by using Eqs. (72). Nonuniformities 

along the longitudinal axis are neglected, with the assumption that the 

gain and loss mechanisms are uniformly distributed between the reflec

tors. Furthermore, longitudinal and radial variations of the radiation 

are ignored so the ~ and N must correspond to a single mode. Despite 

these approximations, there are many times when the equations adequately 

describe the laser system. The giant pulse of a Q~switched laser is 

one such example. When they can be used,the laser rate equations are 

particularly useful due to the ease with which numerical techniques may 

be used to obtain solutions. 

In order to use·a computer in solving the rate equations, ideally 

they should be rendered in a dimensionless form. The time variable and 

density of population inversion have a natural normalization 

~~~N 
at threshold 

tR = cavity round trip time. (73) 
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At threshold one wants 8~/at 0 which from Eq. (72) gives 

~hreshold = 0CT 
c 

(74) 

The contribution of S has been ignored since its contribution to ~ at 

or above threshold is small. Using this value for N h h ld and ext res o 

pressing 

1 E: 
-=-
T 

c 

s = fractional round trip cavity losses 

we can define a more useful loss independent normalization 

-
.A'"" crctlf"'= ~~hreshold 

(75) 

(76) 

The normalization for ~ has been selected to match that for N, with the 

factor (1 + g2/g
1

)/2 thrown in to make the final equations resemble the 

well known Statz and deMars equations for a single mode maser. The la-

ser rate equations have the form 

cont'd 
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(77) 

For a giant pulse Q-switched laser, the pump and spontaneous emission 

may be ignored giving 

Clt 

(78) 

-The last condition is an initial condition on ~. ~ is the flux pre-'~'o 

sent in the cavity at threshold. Retaining the noise term S/ac gener-

ates this flux automatically. Though the S/ac term is important below 

threshold to determine the seed pulse or noise that starts the lasing 

action, once lasing starts it has little affect on laser dynamics. 

Thus, the approximation of Eq. (78) where the small S/ac term is re-

placed by an initial condition on ~ works well. An error in specifying 

~ 0 results only in a shift in origin as long as ¢
0 

is chosen small com-

pared to the maximum value of ~· The actual value of ~ will be speci
o 

fied when we solve Eq. (78). We shall return to Eq. (78) in Chapter 

III where we deal with the effects of an inducible loss in the laser 

cavity. 

The laser rate equations, do not, as mentioned earlier, explain 

the spatial variation of the radiation field in the laser cavity. This 

variation is known as laser mode structure and can take two forms. 

Longitudinal modes have the same field distribution in a plane perpen-
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dicular to the direction of propagation and differ from one another 

only in their oscillation frequency. Transverse modes differ from one 

another in field distribution with or without a difference in oscilla-

tion frequency. Thus, for each transverse mode there corresponds a 

number of longitudinal modes with the same field distribution. (See 

Fig. 12 for some typical mode patterns.) If the laser is being used as 

a light source where power emitted is the primary concern (such as for 

pumping) then an effort is made to maximize the number of transverse 

modes that lase, as this makes for maximal use of the population inver~ 

sion. On the other hand, when the laser is being used in studies where 

it is important to know the laser dynamics of where the output radia-

tion field distribution plays an important role, then the effort is 

made to allow only one transverse mode to lase thereby maximizing the 

knowledge of the laser characteristics and minimizing the error intro-

duced by the laser source. Usually a TE mode (see Fig. 12) is chosen 
00 

since this mode has the smallest beam divergence, the highest power 

density and can be focused to a diffraction limited spot of maximum 

power per unit area. Selection of a single longitudinal mode is less 

critical, but again single mode operation is best. When it is desired 

to use the laser rate Eq. (78), then single mode operation becomes even 

more important. 

Standard mode selecting procedure calls for a pinhole to be in~ 

serted into the laser cavity on axis. Only the TE mode with its en
oo 

ergy concentrated near the axis will survive. Proper mode selection 

requires a pinhole size small enough to discriminate against the next 

higher order mode yet large enough to permit lasing in the TE mode. 
00 

Often this results in lasing action solely in a TE mode but at the 
00 
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cost of an increased thresold for lasing. The actual choice of pinhole 

size will be discussed below after the discussion on cavity losses. 

Longitudinal mode selection can be achieved in a variety of ways. 

For a saturable absorber Q-switched ruby laser though, the selection is 

automatic. 18 Since such a laser was used for our experiments, the dis

cussion will be limited to this case. The case of most solid state la

sers Q-switched by saturable absorber is similar. The principle under

lying the mode selection is one of natural selection. When properly Q

switched, the laser output (for saturable absorber) occurs at the end 

of the pump pulse. Since the pump pulse is very long compared to the 

cavity round trip time, this assures a large build up time from noise 

to eventual threshold. This large build up time allows many cavity 

round trips during the process. Any difference in gain for the various 

longitudinal modes will be greatly amplified during these trips leading 

to a selection of one dominant mode when thresold is reached. The pow

er in the dominant mode is compared to that of adjacent modes in Fig. 

13. It is clear from this figure that the gain difference between the 

dominant and adjacent modes need not be large. However, at least some 

difference must be present. For most lasers the gain difference be

tween adjacent modes directly attributable to the active material is 

insufficient to play a significant role in the selection process. 

Usually, a resonant reflector is used for the purpose. To insure sin

gle mode operation, the spectral width of the reflector resonance must 

be small enough to insure sufficient gain differentiation between the 

different modes. The gain differentiation needed is much less than the 

CW case would require where no amplication is possible. The output 

etalon used to select lasing transition in a ruby laser is usually suf-
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ficient. 

Assuming that the laser is successfully operated in a single TE 
00 

mode, the radiation field distribution will then have the form 

&(r) 
2 2 

= & e-(r /w) 
0 

18 

(79) 

This is, of course, a Gaussian. Propagation of a beam with such a Gaus-

29 30 sian profile is well understood. ' A typical Gaussian beam is shown 

in Fig. 14 with the important parameters labelled. The beam can be 

described by the Gaussian beam parameter q(z) 

(80) 

where A is the wavelength of the radiation field and n is the index of 

refraction of the medium, In terms of this parameter q, the effects of 

some lens-like media can be specified. Ths subscript i refers to ini-

tial, f to final. 

straight propagation: 

lens of focal length ~: 

mirror of radius R: 

1 =-- 1 
f 

= q. (z) + f::,z 
~ 

1 1 2 -=---
R 

(81) 

When many optical elements are present it is convenient to use a matrix 

representation of the transformation 
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[Al Bll Alql + Bl 
q2 = D

1 
(ql) = 

cl Clql + Dl 
(82) 

Then for multiple elements 

A2 
Al Bl 

(ql) + B2 

r2 B2] cl Dl 
q3 = D

2 
(q2) = 

c2 
c rl Bl] (ql) + D2 

2 c 
1 Dl 

(A2Al + B2Cl)ql + (A2Bl + B2Dl) 
= 

(C2Al + D2Cl)ql + (C2Bl + D2Cl) 

r2 B2lrl Bll "' D
1 

(ql) 
cz Dz cl 

(83) 

which points out the utility of this representation, allowing one to 

use simple matrix multiplication to handle a series of optical elements. 

The matrix equivalent of Eq. (81) are 

straight propagation. [~ ~] through distance d 

interface n
1 

+ n
2

: [~ n1~nzl 
lens of focal length f: 

[ 1 01] -1/f 

mirror of radius R: 
(84) 

As indicated in Fig. 14, Gaussian beams diverge at a full angle e = 

2A/rrw , This Gaussian beam diffraction usually constitutes the primary 
0 

cavity loss mechanism after loss from the mirrors. 
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There are three main sources of loss in a laser cavity: loss 

through the mirrors, diffraction losses, and losses due to elements in~ 

serted into the cavity. The first two loss sources have been extensive~ 

ly studied for resonators in general. This theory will be presented be-

low. The third loss term, being experiment specific, will be presented 

in Sections III and IV. 

With no inversion population density, the differential Eq. (78) for 

cp is 

(85) 

with the indicated solution. Since in one round trip the mirrors in-

duce a factor (1 = T1)(1- T
2

) to¢, the value forE due to the mirrors 

is [T. is transmissivity of mirror i] 
1. 

For most laser cavity one of the reflectivities, R
2 

by conventio~ is 

very close to 1. Then 

(86) 

(87) 

The case of diffraction loss is more complicated. Consider first the 

empty resonator cavity. Diffraction losses are specified by three par= 

ameters (1- L/R1), (1- L/R2) and N,where Lis the resonator length, 
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R. is radius of curvature of mirror i, and N is the resonator Fresnel 
~ 

number defined below (Eq. (88)), Passive laser resonators can be divid~ 

ed into two classes -- stable or unstable -- based on the parameters 

(1- L/R
1

) and (1- L/R2). The division between stable and unstable 

resonators is shown in Fig. 15 with several common resonators indicated, 

This discussion will be restricted to stable resonators, which have 

wider utility than the unstable resonators. 

For a stable resonator, a cavity mode must have the same spatial 

profile and wavefront after completing a cavity round trip as it had at 

the start. This condition together with the parameters (1 - L/R
1

) and 

(1 - L/R2) uniquely determine the size of the cavity mode and the wave-

front at any point in the cavity. Diffraction loss occurs whenever a 

cavity element is insufficient to pass the entire spatial extent of the 

mode. For example, the finite size of the mirrors results in spillage 

and an aperature in the cavity will block some of the cavity fields. 

For an empty cavity of length L and with mirrors of radius R the Fres-

nel number 

2 
N "'"~ 

A.L 
(88) 

characterizes the basic "lossiness11 of the cavity due to this diffrac-

tion loss. Physically, N can be thought of as the ratio of the accept-

ance angle of one mirror (a/L) to the di.ffraction angle of a beam with 

a waist located at the second mirror (A./a). For a cavity with R
1 

= R
2

, 

the diffraction loss is plotted as a function of N and (1 - L/R
1

) in 

Fig. 16. 

Clearly, the theory must be extended to include elements in the 
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resonator such as active material, mode selection aperature, and what-

ever else is needed. One feature is particularly valuable in dealing 

with the mode selecting aperature. The parameters (1- L/R
1
), (1- R2), 

N fully describes the diffraction loss.
18 

This means two resonators 

with identical values for those parameters will show the same loss. 

This holds even if the mirrors are not limiting aperature. For a reson-

ator with a limiting aperature, Eq. (88) still holds but with "a'' befng 

the radius of the aperature rather than the radius of the mirrors. 

Given N determined this way, Fig. 16 remains valid. 18 
An assymmetric 

cavity with a limiting aperature is easily transformed into two symme-

tric cavities for the purposes of calculating diffraction losses. The 

procedure is shown in Fig. 17. Since the size of the aperature is al-

ways much smaller than the size of the non mode-selected radiation 

field distribution, it is a good approximation to assume that a beam 

waist occurs at the pinhole as seen in Fig. 17a. The plane wavefront 

at the aperature allows the cavity to be viewed as two independent cav-

ities each with a plane mirror the size of the aperature replacing the 

actual aperature, as shown in Fig. 17b. Reflection symmetry about this 

plane mirror implies that the diffraction loss for each of the sections 

in Fig. 17b is just ~ the diffraction loss for the symmetric cavity con-

sisting of the section in question together with its reflection. The 

symmetric cavity is shown in Fig. 17c for the left section of 17b. 

Any elements inserted into the cavity usually can be replaced by 

equivalent optical elements for the purpose of calculating diffraction 

loss or radiation field distributions. The laser active material usual-

ly is replaced by a thin lens. It turns out that a thin lens or an 

aperature is a good approximation for many of the commonly inserted in-
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tracavity elements. The effect of an aperature bigger than the mode 

selecting aperature will have no effect and any smaller ones can be 

treated via the technique given above. The addition of a thin lens 

that does not change the limiting aperature leaves the Fresnel number N 

unchanged. The radiation field distribution is changed though, which 

affects the (1- L/R.) parameters. Physically, 1- L/R. is the amount 
~ ~ 

a beam with radius of curvature R. at mirror i will expand or shrink by 
~ 

the time it reaches the opposite mirror in limit of infinitely large 

beam size. For the empty resonator we have, using Eqs. (80), (82), 

(84), 

[converging wavefront] 

1 -= ii\) R --2 
1 1TWl 

A A l( L)2 
1TW; = 1TW~ 1 

- Rl 

(89) 

where the reasoning for each step is immediate. The generalization to 

the addition of a thin lens is now apparent. The matrix [~ ~] describ

ing the empty cavity should be replaced by the product of matrices re-

presenting the actual cavity. For the cavity shown in Fig. 18, one 
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would replace 

1 z] r 1 
1 l-1/ f 

Using the replacement Eq. (90) in the derivation Eq. (89) gives 

(1 - L2/f)q1 + L
0 

q2 = -1/f ql + (1 - L
1
/f) 

1 _, 
-1/f + (1 - L1/f)/q1 

(1 - L 2/f) + L
0
/ql 

_A. "" _A. \(l _ _ L0 )2 
2 2 f R 

TIW2 TIWl 1 

(90) 

(91) 

From Eq. (91), it is clear that the parameters (1- L/R1), (1- L/R2) 

should be replaced by the parameters (1- L2/f- L
0

/R
1
), (1- L

1
/f

L
0

/R
2
). With this replacement the theory should hold as before for the 

empty resonator. The extension to more than one lens is obvious. 

We finally address the topic of choosing the proper mode selection 

aperature size. The discussion above shows how the diffraction losses 

for the TE mode can be determined. A similar technique could be used 
00 

to determine the loss for the TE10 mode, which is the next higher order 

mode. This becomes unnecessary since the ratios of losses for the TE10 
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and TE losses has been calculated as a function of N and (1 ~ L/R
1

) 
00 

for an empty symmetric cavity. The results are displayed in Fig. 19. 

Using Figs. 16 and 19, the trade off of increased threshold (large TE 
00 

mode loss) versus good discrimination (large TE
10 

mode loss) can be 

evaluated for the particular setup and an aperature size selection can 

be made. 

F. Conclusions 

In Section II, we have presented the theory for topics that are 

necessary to the understanding of later sections. An effort has been 

made to retain generality in this presentation. Specific numbers and 

details will be added as needed in the subsequent discussions. 
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Figure Captions 

Table 1. Chart of ~1BBA relaxation times at various sample temperatures. 

Fig. L 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

Holecular structure of MBBA. Dipole moment forms as indicated 

by (+) and (-). 

Free energy versus order parameter for a liquid crystal when 

the cubic term is small (from Priestly4). 

Free energy versus order parameter for a liquid crystal when 

the cubic term is large (from Priestly4). 

Relaxation time for ~BA as a function of sample temperature. 

Sketch of minimum output beam radius from an ~BA cell as a 

function of cell length. 

Sketch showing transient self focusing in a Kerr liquid. 

Different parts (a-f) of the pulse focus and defocus along 

different ray paths. The pulse first gets deformed into a 

horn shape and then propagates on without much further change 
. 3 

(from Shen ) . 

Plot of limiting beam radius versus pulse power for HBBA. 

5 Numbers are from Wong. The assymtotic value is determined by 

competing nonlinear processes. P . . 
1 

is 0 .12 Kll)'. 
cr~t~ca 

Beam radius verus time for quasitransient self focusing at 

output of sample cell. Cell length is longer than the mini-

mum required to reach the horn shape. 

An exaggerated sketch of how the wavefront for a plane wave 

input distorts due to mild self focusing. 

Fig. 10. Optical path lengths corresponding to the distorted wavefront 

of Fig. 9. 
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Fig. 11. Diagram of the three level ruby laser energy levels. w13 is 

pump energy. T .. is the spontaneous lifetime for decay from 
lJ 

state i to state j. E., g., N. are the energy, degeneracy, 
1, 1, 1. 

and population density for the state i. 

Fig. 12. Examples of (a) cylindrical and (b) rectangular transverse 

mode patterns. For cylindrical modes, the first subscript in-

dicates the number of dark rings, whereas the second subscript 

indicates the number of dark bars across the pattern. A 

starred second subscript indicates a superposition of two un-

starred modes rotated 90° from one another. For rectangular 

patterns, the two subscripts give the number of dark bars in 

the x andy directions (from Koechner18). 

Fig. 13. Hode selection during the build-up of the pulse. The parame-

ter R /R expresses the differences of the reflectivity which 
n m 

these t'vo modes (n and m) experience at the mode selector 

during one round trip. Power ratio of the dominant mode to 

adjacent modes is plotted versus number of round trips in-

valved in pulse build-up. Two values of the reflectivity ra-

18 tio R /R are shown (from Koechner ). 
n m 

Fig. 14. Side view of a Gaussian beam with the important parameters 

Fig. 15. 

Fig. 16. 

Fig. 17. 

labelled. This figure provides the definition of w(z) and 

R(z). 

Stability diagram for the passive laser resonator. 

Diffraction loss per round trip for the TE mode of various 
00 

18 symmetric and stable resonators (from Koechner ). 

Reduction of an assymetric resonator with an aperature to an 

equivalent pair of symmetric resonators for calculating dif-
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fraction losses. 

Fig. 18. Passive resonator with one thin lens inserted. 

Fig. 19. Ratio of the round trip losses of the two lowest~order modes 

for the symmetric geometry. The dotted lines are contours of 

18 constant loss for the TE mode (from Koechner ). 
00 
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Table 1 

Temperature Relaxation Time 

45° c 185 nsec 

50° c 65 nsec 

55° c 35 nsec 

50° c 22 nsec 

65° c 15 nsec 

70° c 11 nsec 
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Figure 12 
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III. ELLIPSE ROTATION INDUCIBLE LOSS 

A. Introduction 

This section investigates the potential for using self induced el~ 

lipse rotation (SIER) as an inducible loss in conjunction with a satur

able absorber Q-switch. As SIER in liquid crystals shows particular 

promise for this application, any model must include the transient na

ture of liquid crystal response. A computer model doing so was devel

oped and used to study the phenomena. The results as applied to liquid 

crystals are verified via experiment. 

The development of the explicit computer model is lengthy and 

quite complicated. We summarize here the steps involved to give an 

overall view of the derivation. The basic equations of the computer 

model are given in Eq. (78). The£ term, which represents the cavity 

round trip loss, contains the physics of the model. There are four do

minant contributions to £: SIER induced loss, diffraction loss, trans

mission through the mirrors, and loss due to the Q-switch dye. The 

transmission through the mirrors has been discussed previously (Eq. 

(87)). Determination of the remaining contributions to£, and the pro

cess of converting from physical fields and parameters to the normalized 

flux and inversion population densities used in the laser rate equations 

are covered in Sections IIIB-IIID. The highlights of these sections 

can be seen in the outline below: 

IIIB. SIER contribution to £ 

1) Use of Jones matrices to determine ellipse rotation 

2) Averaging over the spatial variations in ellipse rota

tion to determine round trip loss due to SIER elements 
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3) Recommendations on optimal choice of settings for the 

SIER elements 

IIIC. Calculation of cavity diffraction loss 

IIID. Loose ends 

1) Calculation of cavity loss due to Q-switch dye 

2) Expressing physical fields and parameters in terms of 

the laser rate equations 

Finally, Section IIIE presents the finite difference equivalent for the 

equations developed in IIIB-IIID. Proper values for unspecified initial 

conditions are determined and the equations are programmed into one com-

puter for analysis. 

B. Cavity Loss from SIER 

SIER losses are polarization dependent. To handle the mathematics 

involved, it is convenient to use the technique of Jones matrices. In 

this technique the polarization is 

p " (:;) (92) 

where the z axis is along the direction of propagation. Each optical 

element is represented by a matrix such that 

[ Jone.s l(P. ) . 
matn.xJ 1n 

(93) 

These matrices can be multiplied together to get a cumulative effect for 

several elements. 30 

A typical experimental setup for SIER induced cavity loss is shown 
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in Fig. 20. The details of the setup will be provided in the experi-

mental Section IIIF. All that is important here is the ,sequence of ele-

ments a photon would pass through in a round trip. The SIER dependent 

loss arises from the elements between the pinhole and the 100% 10m mir~ 

ror. These elements are traversed in the sequence: 

1) GT ~ Glan prism, passing horizontal polarization 

2) FRl - Fresnel rhomb, angle ~l between fast axis and horizontal 

3) MBBA - MBBA cell, SIER angle e1 + e
2 

4) FR2 - Fresnel rhomb, angle ~ 2 between fast axis and horizontal 

5) MR - 100% mirror, radius of curvature 10 m 

6) FR2- See above (4), but angle -~ 2 
7) MBBA - See above (3) 

8) FRl- See above (2), but angle -~1 
9) GT- See above (1). 

All elements are antireflection-co'ated except the MBBA cell and the in-

side surfaces of the Glan prism. The MBBA cell introduces a 4% loss at 

each face and the Glan prism a 9.4% loss for a single pass. Total round 

trip loss is (1 - 90.6 x 90.6 x 96 x 96 x 96 x 96) = 30% for the hori-

zontal polarization with no SIER. Of course, all the vertical polari-

zation is reflected by the Glan prism so there is a 100% loss for that 

polarization. We can calculate the loss with SIER present. The Jones 

matrix for each element above will be referenced by the abreviations 

given above (GT, FRl, etc.). The x axis is assumed to be on the hori-

zontal. Overall phase factors are ignored. 

Some of the Jones matrices are immediate: 

(0/,1 0) 
[GT] = 0 0 cont' d 



[M] = ( 01 0 ) 
-1 

When the fast axis of the Fresnel rhomb lies along x then 

[FRl] 1 
= (~ ~) = [RET]. 

(94) 

(95) 

The case for the fast axis rotated by ~l from the horizontal can be ob

tained from Eq. (95) by a simple coordinant rotation: 

(96) 

where [~] is the coordinant rotation matrix for a rotation of angle ~. 

By analogy 

[FR2] = [-~2J(~ 

[FRl] = [~1](~ 

[FR2] = [~2](~ 

sin~). 
cos~ 

~)[~2] 

~)[-<jll] 

~)[-<jl2]. 

(97) 

(98) 

The MBBA cell will rotate the polarization state of incident elliptic-

ally polarized light. The size of this rotation depends on both the 

ellipticity and the intensity of this incident field. While the ellip-

ticity does not change, the intensity does (because of diffraction) be-
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tween the first and second passages through the MBBA cell. As a result 

e
1

, induced by the forward travelling field is usually> e2 , induced by 

the backwards travelling field. Forward and backward here refer to be-

fore and after reflection by the 100% mirror. Rotation of the polariza-

tion by an angle e is equivalent to a coordinant rotation of -e. In-

eluding the loss at the windows we have 

The a
1

, a
2 

are transmission factors due to reflection loss. a 1 refers 

to the Glan prism and a
2 

to the MBBA cell. Multiplying the various 

Jones matrices together, the transmitted SIER fields are given by 

-- --- -- + [GT) [FRl] [l,ffiBA] [FR2] [MR] [FR2] [MBBA] [FRl[ [GT] (P. ) • 
~n 

(100) 

by I+TI The relative magnitude of the output to.input fields is given 

+ 1+1 and the polarization of the output field by T/ T . The equation for 

+ 
the reflected SIER fields R, is identical to Eq. (100) with the first 

[GT] replaced by 

(101) 

where a
3 

is the reflection factor for the x polarization at the Glan 

prism. (They polarization is totally reflected.) IRI and R/IRI give 

the relative magnitude and polarization of these reflected fields. 

Using [RET] defined in Eq. (95), we expand Eq. (100) as 
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= [GT](cosx -

i 

i sin2Q!
1
sinx 

cos2<P
1 
sinx 

i cos2Q!1 sinx )fa1a;Px) 

- cosx - i sin2<P 1 sinx \ 0 

(102) 

The setup for our experiment used <P
1 

= ¢
2 

= ¢ and a brewster cut ruby 

rod. (Px = 1, therefore.) Equation (102) then becomes 

(104) 

+ The final [GT] term was retained until the final step to allow R to be 

obtained easily. 

+ + 
Unfortunately, both T and R are a function of the incident field 

intensities. The incident field in our case is a TE cavity mode, with 
00 
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the envelope 

&(x,y,t) 
2 2 

"" & (t)e-r /w 
0 

(105) 

where w is the halfwidth of the Gaussian spatial field distribution and 

A 

the cavity axis is assumed to lie on z. This means that a unique SIER 

' 
angle e cannot be defined. Thus, the net SIER caused transmission or 

reflection must be an average over the Gaussian profile. Recall from 

the last chapter Eqs. (49), (52)-(54) with a cell length~. 

The factor jE+I
2 

- jE !2 
can now be evaluated. After the first passage 

through FRl, the polarization state is given by 

( 
2,.. + . . 2,..) cos 'I' L sLn 'I' 

= sin<P cos¢(1 - i) 

= sin2cp. (107) 

The proper averaging is, of course, done for ITI 2 and 1Rj 2. 

00 2 2 

I 2 r -zr tw + I 
< Tl > = Jft 2nrdr e \T(r) 

0 

(108) 
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The integration of Eqs. (108) and (109) is straightforward using the 

substitution 

= e.(r = O)r' 
~ 

Using Eqs. (110) and (111), we get immediately 

(110) 

(111) 

(113) 

The a1 ,a2 ,a3 are as defined previously. At this point, using experimen

tally determined data for the Gaussian width w for each passage through 

the MBBA cell, we can relate e
1 

(r = 0) and e
2

(r = 0). If we call w
1 

and w2 the halfwidths for the Gaussian spatial distribution at the MBBA 
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cell, we have for the forward travelling field, just prior to entering 

the MBBA cell 

&(x,y,t) 

while the backward travelling field. again just prior to entering the 

tffiBA cell, is given by 

&(x,y,t) 

Conservation of energy requires 

00 a; f 2'1Trdr e (114) 
·o 

2 where the a
2 

factor accounts for reflection loss at the MBBA cell win-

dows. Solving Eq. (114) gives 

= .5381 (r = 0) 

where we use the experimentally determined values w
1 

.86 mm. We can now write 

(115) 
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O) = L53e(t) 

e(t) = e
1

(r = O) 

= whS sin2cp 
2cnTM 

We cannot study the transient limit until the computer model is 

fully developed. It is possible to look at the quasi-steady state limit 

to gain insight into the proper, choice of Fresnel rhomb angle ~. The 

values for <JTI 2>and JT(r = 0) 1
2 are plotted in Fig. 21 as a function of 

peak intensity I incident on the sample for the steady state limit 
0 

We display JT(r = 0) 1
2 primarily for comparison purposes. Previous 

(117) 

work on SIER induced cavity loss has used jT(r = O)j 2 instead of the 

proper <\T\ 2>, 16 and it is informative to see what effect this had on 

their calculations. 

Careful examination of Fig. 21 shows the important role played by 

the Fresnel rhomb setting angle ~. The setting ~ = TI/8 radians induces 

the maximum SIER loss for low field intensities. (In low ~ limit, sine 

~ e, so loss - cos2~ sin2~ which has max at ~ = TI/8.) Despite this 

fast initial growth in loss as the power increases, the limiting value 

of <jTj 2> is a relatively high 70-75% (25-30% loss). In contrast, a 

small angle ~ = TI/64 radians, results in a slower increase in loss as 

the power increases, but a much higher limiting value (60% loss). Thus, 

for low cavity intensities it is natural to choose ~ = TI/8 to take ad-
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vantage of the rapid initial growth in loss. For higher intensities, it 

becomes beneficial to reduce ~ and utilize the greater maximum losses 

attainable. 

The plot of <IT! 2
> in Fig. 2la shows an initial region where the 

SIER induced loss increases monotonically with intensity, an intermedi

ate region where the SIER induced loss ossillates as intensity increas

es, and a final region where the SIER induced loss remains fairly con

stant as the intensity increases. To simplify the discussion, we will 

refer to the first region as the increasing loss regime, to the second 

region as the oscillating loss regime, and to the third region as the 

constant loss regime. If the SIER induced cavity loss is to be used 

for pulse shaping, it is desirable to operate in the increasing loss re

gime. The reason should be clear. Operating in the oscillating loss 

regime will introduce temporal structure to (as opposed to smoothly 

stretching) the pulse. Operating in the constant loss regime not only 

requires passing through the oscillating loss regime but also defeats 

the purpose of using an inducible loss. No further increases in loss 

occur regardless of intensity increases once the constant loss regime 

is entered. 

To insure operation in the increasing loss regime, it is important 

that an adequately low value of Fresnel rhomb angle ~ be used. If too 

large a value is used, then the maximum loss may be insufficient to 

overcome the gain resulting in increases in intensity sufficient to 

reach the oscillating or constant gain regimes. If the proper value is 

chosen, the induced loss will be large enough to neutralize the gain 

while cavity intensity is still in the increasing loss regime. Since 

cavity intensity increases when gain > loss, but decreases when gain < 
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loss, this insures operation only in the increasing loss regime. Now, 

referring to Fig. 21a once again, we see that sensitivity, that is the 

loss induced at low cavity intensities, is much greater for ~ = TI/8 ra-

dians than that of Fig, 2lb where ~ = TI/64 radians. Since the sensitiv-

ity is a measure of the effectiveness of the SIER induced losses, it is 

thus best to chose a Fresnel rhomb angle ~ small enough to insure opera-

tion in the increasing loss regime, but no smaller. The actual choice 

of ~ should be experimentally varied until this criterion is met. 

16 Previous work with SIER induced cavity loss (by Murphy and Chang ) 

used a rotating prism Q~switch, with prism rotation so slow that the 

pulses were nearly free running. The low cavity intensities arising 

with such a Q-switch technique can only induce relatively small SIER in-

duced cavity losses. Because of the low cavity intensities, two errors 

made by the authors turned out to be relatively insignificant. The au-

thors assumed that ~ ~ TI/8 radians was the optimal Fresnel rhomb set-

ting. We have seen that this is true only in the case of low cavity 

intensities. More important, the authors neglected to spatially aver

age the SIER transmission, using jT/ 2 on axis as the transmission in

stead of the correct <ITI. 2
>. As seen in Fig. 2la, for low cavity inten

sities, the difference between IT! 2 and <ITI 2
> is primarily one of abso-

lute values. The qualitative behavior at these low intensities does 

not differ greatly. Thus, the authors did not detect their errors. 

For saturable absorber Q-switching, high cavity intensities are common 

(at least if proper Q-switch dye concentration is used). For this case 

it is important not to repeat Murphy and Chang's errors (because of the 

high cavity intensities) and we incorporated into our model both proper 

spatial averaging (</Ti 2
>) and the necessity of properly choosing the 

76 



77 

the Fresnel rhomb angle ~. 

Using Eqs. (112) and (116), we can specify the fractional round 

trip SIER loss needed for the laser rate equations 

(118) 

Equation (118) will be used in Section IIID where the laser rate equa~ 

tions are explicitly modeled, 

C. Diffraction Loss 

Having specified the experimental setup (see Fig. 20 and Section 

IIIF for details), it is straightforward to use the procedure outlined 

in Section IIE along with Figs. 16~19 to evaluate explicitly the cavity 

diffraction losses. This chapter examines the limit when self focusing 

may be neglected. In the limit where self focusing becomes noticeable, 

the substantial changes in the cavity radiation fields must be given 

consideration, This is done in Chapters IV~VI. In the absence of self-

focusing, most of the elements contribute to diffraction loss only via 

a change in effective cavity length. From Figs. 22 and 23, the change 

in effective cavity length due to each Fresnel rhomb is (n = 1.51 

glass) 
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01 = 
2 (. 5 em) + 

(sin 54.6°)(lcm) 2 (. 5 em) 
n tan 35.4° n sin 35.4° tan 35.4 o 

(sin 19.2°)(sin 54.6°)(1 em) 
sin 35.4° 

= (1 cm)(tan 54.6°)[ 1 : 51 - 1- sin 19.2°] 

= - 0.01 em (119) 

which can be ignored when compared to the 1 m cavity length. The l1BBA 

cell, Glan prism, and Q-switch cell each have (Fig. 23) 

OL = cell length/n 

(OL) = 1 cm/1.33 - 1 em= - .25 em Q-switch (n = 1.33 methanol) 

(81) = 1 cm/1.66 - 1 em = - .40 em Glan prism (n = 1.66 calcite) 

(oL)~ffiBA = £/1.59 - 9v em= (9v) (- .37) (n = 1. 59 l·ffiBA) 31 

(oL)Window = .5 cm/1.51- .5 em=- .17 em (n = 1.51 glass). (120) 

Again, these corrections are all small compared to the cavity length, 

and within the accuracy needs of the calculation can be safely ignored. 

Likewise, the effect of the ruby rod on effective cavity length will be 

negligible for reasons similar to those leading to the small 81 for the 

Fresnel rhomb (Eq. 119). 

Thus, the only component that should affect the diffraction loss 



is the lensing effect of the ruby rod. It has been found that the ruby 

rod can be approximated by a thin lens when dealing with spatial charac~ 

teristics of the cavity radiation fields. 18 Thermal effects due to ab~ 

sorption of the pump energy and the cooling water flow induce the lens~ 

ing. Following the procedure outlined in Fig. 17 and Section IIE, the 

cavity can be viewed as the two symmetric cavities shown in Fig. 24. 

Of course, for the two lens cavity of Fig. 24b, the propagation matrix 

(see Eqs. (80)~84), (89)) is given by 

2 
q 

11] r 1 o][l 
1 l-1/f 1 0 

2 (2L1 + 2L2)/f + 2L1L2/f 

- 2/f + L/f 

- 2/f +. 

1 -

2L2) [ 1 
1 -1/f 

(2L1 + 212 - 2L1L2/f)(l- L1~f~ 
1 - (2L1 + 2L2)/f + 2L1L2/f J 

(121) 

The numerical values for the resonator parameters necessary to specify 

diffraction loss are shown on Fig. 24 as well. The experimental setup 

of Fig. 20 has been used to provide the numerical parameters and the 

experimentally determined focal length for the ruby rod is used. The 

diffraction loss can now be determined using Figs. 16 and 18, bearing 
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in mind the relationship 

actual cavity loss=~ loss of cavity in 24a +~loss of cavity in 24b. 

(122) 

The table for various values of pinhole radius a are displayed in Table 

2. The fractional round trip cavity loss s is as before 

sDIFF =- ~n[single pass transmission after diffraction). (123) 

From Table 2, once the aperature size is selected, the diffraction loss 

sDIFF can be determined. The experimental setup uses an aperature 1.75 

mm in diameter, so 

(124) 

The choice of pinhole size will be discussed in the experimental Section 

IIIF. 

D. Laser Rate Equations - Computer Model 

The necessary equations for establishing a computer model were pre-

sented in Section IIE (Eq. (78)). Only the s needs to be specified. 

So far, the contribution of the SIER cavity elements and cavity diffrac

tion to s have been derived. To complete the specification of s, we 

need to determine s for the Q-switch cell. 

On the time scale of a Q-switch laser pulse (~ 10 nsec for our ex

perimental setup), the response time of the saturable absorber Q-switch 

cell is very small. Because of this, it is customary to treat the loss 
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as the reciprocal of a step function t = 0. 32 We choose to refine the 

treatment and use an exponential decay with a time constant equaling the 

saturable absorber relaxation time, 

(
TRANS) 
PASS Q-SWITCH 

4 2 
a.2a.4 t < 0 

a;~- (1-a.~)e-t/TSA) t~O 
(125) 

where 'sA = relaxation time for the saturable absorber, a. 2 = transmis

sion through an uncoated glass windmv = , 96 (same as a.
2 

for HBBA cell), 

and a
4 

= transmission through the Q-switch cell due to saturable loss 

at time lasing beings. In Eq, (125), 1- a~ is the saturable loss, 

which is assumed to decay exponentially. a
4 

is not equivalent to the 

presaturation transmission, Since lasing typically does begin until 

partial bleaching occurs, a
4 

is typically greater than the presaturation 

transmission, Thus, a
4 

will have to be determined experimentally, 

Using Eq. (125) the fractional round trip loss due to Q-switching is 

!1, rTRANS] 
- nl PASS Q-SWITCH 

t < 0 

t ~ 0 (126) 

With 2 specified, we now relate the field strengths /& (t)/ 2 to the 
0 

normalized photon density ~. As before, it is important to average over 

the Gaussian field distribtution to evaluate the average photon density 

to be used in the laser rate equation 

~(t) 

cant 1 d 

81 



CYCtR(l + g2 /g1 ) 
~ 

2 

CYCtR(1 + g2/g1) 

2 

where we have used the conversion 

1 2 2 
8 'IT < J E I > = hw¢ ( t) , IE I 

2 2 -2r /w 
e 

2 2 
-2r /w 

e 

(127) 

(128) 

It is now possible to begin evaluating some of the equations developed 

and casting them into a form that can be used in a computer model. 

From Eqs. (38), (76), and (118) 

8(t) 

-8 ( t) dt' 

--
8.5 X 10-15 9. sin2p rt-- -(t-t')(tR/TN) -

2800/T Joe ¢(t' )e - dt' • 
a e - 00 

(129) 

tR is, as defined before, the cavity round trip time. From Eqs. (85), 

(87), (118), (124) and (126), we have 

cont'd 
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(130) 

{ 
t < 0} \vhere t ~ 0 

is implied by the use of brackets. We convert the beha~ 

vior at t = 0 into an initial condition on n(t), s(t) 

n(t ~O)~l. 27 n ( 2) n [ 1 + sin
2

(2¢) + cos
2

(2¢) sin(6,128(0))] 
no= - - -x,na4 -x,n"2 2 2 6.128(0) 

s = s(t = 0) = n , 
0 0 

For convenience we present here the laser rate Eq, (78) 

dn(t) 

dt 

--dp ( t) 

dt 

2n(t)¢ (t) 

¢(t)(n(t) dt)) 

(131) 

(132) 

with 8 and s given by Eqs. (129) (130), using the initial conditions in 

Eq. (131) and a small seed ¢(t = 0) = ¢ to represent spontaneous emis
o 

sion. 

Equations (129)-(132) represent the proposed model for calculating 

the dynamic effects of SIER induced loss in a laser cavity. The numer-

ical solution of this model is the topic for the next section. 

E. Computer Results 

To be used in a computer calculation, the model from the last sec-

tion must be cast as finite difference equations. We define a subscript 

i to refer to t = i~t where ~t is the step size for the finite differ-
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ence calculation. The conversion of the differential and integral equa-

tions is straightforward. 

n . ( 1 - 2¢ . 1~ t) n . 1 1 1- 1~ 

¢i "' [1 + (n. 1 - E:. l)~t]¢. 1 
1.- 1.- 1~ 

[ ( 2~ ( , tR )J [ sin
2

(2<j>) 
2 

+ cos (2¢) 
E:. = 1. 2 7 - 9,n 1 - 1 ~ a 4 xp - w t T SA - £n . 5 + 2 1. 2 

x sin(6,128 1 )] 

6.128. 
l. 

8. [8i-l + 8.5 x 
-15 isin(Z<j>) ~ j ( tR) 

l. 
10 crexp(2800/T) ¢i-l~t exp- ~t 'M 

8.5 X lo-15 £sin(2~) 
l 

8 M ¢ 
0 crexp(2800/T) tR o 

tn(a~) - in [.s + 
sin2 (2¢) 

2 sin(6.128
0
)] 

(il 1.27 - + 
cos (2cp) 

= 
0 2 2 6.128 

0 

n & 
0 0 

¢
0 

= Small Seed Value. (133) 

2 The parameter a
4 

can be determined by measuring the increased pump ener-

gy necessary for lasing. This increase will give the inversion popula-

tion density when lasing begins as compared with the inversion popula-

tion for free running threshold (methanol only in the Q~switch cell), 

d h d 
. 2 an t us eterm1.nes a

4
. 2 For our setup, we found a4 = .61. The only 

parameter still unknown is the stimulated emission cross section cr. 



Previous work has shown the laser rate equations work extremely well in 

predicting the dynamic behavior of a Q-switch laser pulse with no indu

cible loss. 18 Thus, we choose a to be the value that allows the compu-

ter predicted cavity intensity with £ = 0 in Eq. (133) to agree with ex

perimental observations. -19 2 
a = 2.83 x 10 em was the value determined 

to give the correct cavity intensities. This value agrees with known 

values for a. The pulse width predicted was 70 nsec, which agrees with 

experiment, confirming that the choice az = .61 was proper. We display 

the computer calculations in the absence of MBBA (sample length £ = 0) 

in Fig. 25. The pattern used for Fig. 25 will be used to display the 

results for all the computer calculations in this section. 

a) On axis cavity intensity; 2 MW/cm2 per division. 

b) Normalized inversion population density, n; 

Fractional cavity round trip loss, s; .5 per division. 

c) On axis SIER angle; TI/4 radians per division. 

d) On axis intensity for the horizontally and vertically polarized 

light reflected out of the cavity by the Glan prism .2 ~~/cm2 

per division. 

Horizontal scale: 50 nsec per division. 

As expected, Fig. 25 shows no SIER induced loss and a cavity intensity 

of 16 MW/cm2 . The curves in Fig. 25d represent the fields that can be 

easily measured, and are presented for later comparison with experiment. 

With no SIER induced loss, there is no vertically polarized reflection 

from GLAN prism, and the horizontal reflection follows accurately the 

cavity intensities. 

To properly study the effects of SIER inducible loss from MBBA, 

several parameters must be varied, and the effects studied. The key 
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parameters in our experiment were: 

1) Sample length; 1 em reference 

2) Sample temperature; 60°C reference 

3) Fresnel rhomb angle; 15° reference 

4) Transmission through saturable loss element; .61 reference 

5) S bl b b 1 · · 4 x 10-ll sec f atura e a sor er re axat1on t1me; re erence. 

We assuoe the reference values are used unless a different value is 

stated explicitly. Figures 26-28 show the effects of increasing sample 

length from 1 em to 5 em. With a one em sample length, significant el-

lipse rotation is induced (8 ~ n/4- Fig. 26c). However, the induced 

loss peaks after most of the population inversion is depleted (Fig. 26b) 

resulting in only mild effects on the cavity intensity, which is 30% 

smaller, and slightly stretched in the trailing edge. In contrast, the 

ellipse rotation max (8 ~ 3n/8 - Fig. 28c) for a 5 em cell though not 

much larger, occurs when the population inversion is still substantial 

(Fig. 28b). For this case, the cavity intensity shows a 75% reduction 

in intensity and dramatic stretching of the pulse (Fig. 28a). The pulse 

itself shows an exponentially decaying tail after an initial rapidly 

damped oscillatory behavior. This oscillation is typical of transient 

response to a rapidly rising driving force. There is an initial over-

shoot followed by damped oscillations to the "proper" response. The 

damping rate depends on the viscosity, which for MBBA is quite high. 

The counterpart to cavity intensity can be seen in Fig. 28b where one 

sees that the loss also shows a rapidly damped oscillatory section lead-

ing to a steady state condition with the loss just slightly above the 

gain(normalized population inversion). Both the loss and gain decay 

slowly to the steady state (no inducible contribution) value of 1.27. 



Figure 27 shows behavior intermediate between that of Figs. 26 and 28. 

Comparing Figs. 25b and 28b, one sees that the final inversion pop~ 

ulation is much lower lvhen sample length = 0 than when sample length = 

5 em. In fact, since relative population inversion density change mea~ 

sures how much total energy is released, the cavity with 5 em of MBBA 

will only emit less energy than a cavity with no MBBA would emit. The 

remaining energy is dissipated as heat in the laser active material. 

Figure 28b shows clearly that for long MBBA sample length the final nor~ 

malized population inversion density 

(134) 

where s is the fractional round trip cavity loss after the Q~switch dye 

bleaches and excluding any SIER induced loss. We can determine analy-

tically the ratio of energy released for case of Eq. (134) and the case 

with no liquid crystal present. Using Eq. (132) (dividing bottom equa-

tion by top equation) we have 

.£1= 
dn 

with no MBBA present, s can be replaced by the constant s to give 

¢ ~ ¢ 
0 

n 

n 
0 

(n -

Since ¢
0 

is very small, we have for large time 

(135) 

(136) 

cont'd 
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n 
0 

(137) 

Then, knowing n0 /~ we can solve for nf. The ratio of energy released is 

then 

E n - s 
--~o~u~t~p~u~t~(MB~B~A~)-- ~ ~o ____ _ 
E output(No MBBA) 

(138) 

in limit of long ~lliBA sample where nf is given by Eq. (134). For our 

experimental setup, we haves~ 1.27, n
0 
~ 1.7, which gives nf ~ .92. 

Thus, the limit (Eq. (138)), for our case is~ .55. In conclusion, we 

summarize the effects of increasing MBBA sample length: 

1) Energy output decreases asymtotically to a limiting value for 

long cell lengths. This energy decrease is given by Eqs. (137) 

and (138). 

2) Trailing edge first stretches, then shows oscillations, then 

shows damped oscillations followed by slow exponential decay. 

3) Max ellipse rotation rapidly reaches value of TI/4 then slowly 

increases to 3TI/8. 

4) Cavity intensity drops so total energy in pulse follows 1) 

above. 

Next, we consider the effects of varying sample temperature. As 

temperature is varied, two competing effects occur, to a large extent 

offsetting one another. Recall from Chapter II that both the relaxation 

* time and the nonlinear constants diverge as T ~ T • The divergence of 

the nonlinear constants leads to a larger steady state ellipse rotation 

while the divergence in relaxation time leads to a slower response to 

the laser pulse. In the transient case, these effects tend to cancel. 
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In Eq. (129), for example, the critically divergent parts of Sand 'M 

cancel, leaving terms that are much less sensitive to temperature 

changes. The behavior outside the cavity where the induced ellipse ro~ 

tation does not affect the input field can be seen in Fig. 29. Both the 

steady state and transient response are shown. A Gaussian input with 

half width of 35 nsec is assumed for Fig. 29, and the values shown for 

the transient response are from Eq. (129) at t = 0. Though the behavior 

inside the cavity may vary slightly from Fig. 29, it is best to use the 

behavior of a known case to extrapolate to the unfamiliar. In this 

case, we see that the transient conditions change the critically diver~ 

* gent behavior as T + T to a behavior showing only mild increases in 

* nonlinear response at T + T . We expect similar behavior inside the 

cavity, with peak ellipse rotation being mildly greater at T = 50° than 

The computer calculations are shown in Figs. 30~33 and support the 

expectations. Comparing Figs. 30 and 31, we see that the induced SIER 

angle is slightly greater at T = 50°C than at 70°C. Yet, we also see 

that the smaller induced cavity loss at T = 70°C has the larger effect 

on cavity intensity. The cause behind this can be seen in Figs. 30b 

and 3lb. At 50°C, the cavity loss remains high until the population in-

version has been depleted. The large loss causes a steep trailing edge, 

much like the effect seen in cavity dumping. At 70°C, the shorter re~ 

laxation time allows the induced cavity loss to decay more quickly. 

The population inversion is still present as the loss is decreasing, 

with the result that the cavity fields do not decay as quickly leading 

to the stretching of the trailing edge. The actual release of energy 

from the laser active material is slowed by SIER induced loss. A mea~ 
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sure of this slowing is the peak cavity intensities. For 50°C and 70°C 

the peak intensities are comparable, as expected, since the nonlinear 

responses are comparable. The energy remaining in the laser active ma

terial after the peak cavity intensity is reached is therefore not 

greatly different at T = 50°C and T = 70°C. The release of this remain

ing energy depends strongly on the relaxation time of the t1BBA. For 

long relaxation times (T = 50°C), the induced loss stays high long 

enough so that the cavity intensities decay completely, leaving the re

maining energy in the laser active material. For short relaxation 

times (T = 70°C), the induced loss decays quickly enough so that theca

vity fields remaining when the loss drops are sufficient to extract the 

stored energy via stimulated emission, which appears in the form of a 

stretched trailing edge. 

The situation for a 2.5 em sample length is similar but magnified, 

as seen in Figs. 32 and 33. Again, the release of energy is slowed by 

the SIER induced loss. The greater loss for 2.5 em of t1BBA leads to 

smaller peak intensities. As for the 1 em sample, the basic nonlinear 

response as measured by this peak intensity reduction does not differ 

much between T = 50°C and T = 70°C. The release of the energy left in 

the active medium after the peak intensity is reached determines the 

shape of the trailing edge. For T = 70°C, as before, the short relaxa

tion time leads to a release of this energy as the cavity intensities 

fall, leading to a stretching of the trailing edge (Fig. 33a). For 50° 

C, the long relaxation time prevents any release of this energy until 

after the cavity intensities have decayed. With a 2.5 em sample, unlike 

the 1 em sample, enough energy remains in the active material to gener

ate a second pulse once this induced loss does decay (Fig. 32a). 
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We summarize here the effects of temperature variation: 

1) The basic nonlinear response as measured by reduced peak inten

sity or energy left in the laser active material at peak inten

sity depends only weakly on sample temperature" 

2) The release of the stored energy remaining after the peak de

pends strongly on temperature" This dependence is purely due 

to the change in response time of the MBBA. 

3) For short relaxation times, the energy will be released as the 

cavity intensities fall leading to a broadened pulse" 

4) For long relaxation times, the energy will be released as a se

cond pulse delayed by - TM from the first. 

5) Intermediate relaxation time will show a mixture of 3) and 4). 

Next, we turn to the third parameter-Fresnel rhomb setting. Much 

of the discussion on effects of the Fresnel rhomb setting have been dis

cussed previously in Section IIIB, where the implications of round trip 

transmission through the SIER elements was considered (Fig. 21 and dis

cussion thereof)" Observations made in that section are fully supported 

by the computer calculations" The behavior for strong response (i.e., 

long sample length) can be seen in Figs. 35 and 35. At a 15° Fresnel 

rhomb setting, the inducible loss varies monotonically with cavity in

tensities" The maximum inducible loss is sufficient to insure that the 

loss remains in this monotonic regime" As a result, the loss quickly 

reaches a steady state condition with a value just slightly larger than 

the gain (Fig" 34b). The cavity intensity shows a small peak quickly 

settling into a long exponential tail, reflecting the slow release of 

energy stored in the laser active material. The small limiting peak 

intensity and long pulse length are an indication of effective use of 
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SIER for pulse shaping. In contrast, at a 22.5° Fresnel rhomb setting, 

the maximum loss is insufficiently large to limit cavity intensity to 

the regime where the inducible loss varies monotonically with cavity 

intensity. Instead, the loss rapidly enters the oscillatory regime 

(Figs. 21 and 35b), greatly reducing the effectiveness of the inducible 

loss in pulse shaping. This can be seen clearly in Fig. 35a, where the 

peak height is larger and the pulse length much smaller than that seen 

for a 15° Fresnel rhomb setting (Fig. 34a). 

The behavior for weak response (i.e., short sample length) can be 

seen in Figs. 36 and 37. Here we find that even for a 22.5° Fresnel 

rhomb setting, the loss is weak enough so that the attainable cavity 

intensity is insufficient to drive the loss past the regime where the 

inducible loss varies monotonically with cavity intensity. Both the 

22.5° setting and 7.5° setting result in operation in the monotonic re~ 

gime. Since both settings allow operation in the same regime, one ex~ 

pects the larger effect for a Fresnel rhomb setting of 22.5°, where the 

induced loss grows more quickly with increasing cavity intensity than 

any other Fresnel rhomb setting. (Figure 21, Eqs. (111) and (112) ~ 

for weak response, 8 ~sine so loss - sin2~ cos2~ which has max at ~ = 

22.5°.) This is verified by the computer calculation where the peak 

height is lower and the pulse longer for a Fresnel rhomb setting of 22.5° 

(Fig. 37a) than for a Fresnel rhomb setting of 7.5° (Fig. 36a). 

We summarize the effects of Fresnel rhomb setting angle: 

1) For weak response, a 22.5° Fresnel rhomb setting is optimal, 

taking full advantage of the larger initial inducible losses. 

2) As response becomes stronger, it is necessary to decrease the 

Fresnel rhomb setting and use the larger maximum losses thus 
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available to restrict operation to the regime where induced 

losses vary monotonically with cavity intensity. Failure to 

do this severely reduces the effectiveness of SIER inducible 

loss pulse shaping. 

3) Further reduction in Fresnel rhomb setting beyond what is need

ed for 2) merely reduces the induced loss and thus the effec

tiveness of SIER inducible loss pulse shaping, This reduction 

is smooth, and is thus a convenient method of changing the 

amount of pulse stretching from no stretching at a setting of 

0° to same maximum stretching at the setting determined by 2) 

above. 

We now deal with the fourth parameter-transmission through the sat

urable loss element, as lasing starts. Varying this parameter is effec

tively varying the inversion population density at the onset of lasing 

action. (Gain is determined by population inversion and equals loss at 

the instant lasing action starts.) Physically, this parameter (a~ in 

Eq. (133)) is varied by changing the concentration of the saturable dye 

Q-switch solution. The more concentrated the dye solution, the greater 

the intensities needed for bleaching, thus allowing more population in

version to build up before lasing starts. Analysis for this section is 

complicated by the fact that changes in a~ affect both the laser behav

ior with MBBA present and the laser behavior with no }ffiBA present. 

Therefore, it is the difference in laser performan~e with and without 

MBBA present that has significance. The computer calculations when MBBA 

is absent from the cavity are seen in Figs. 38 and 40. The correspond

ing calculations when MBBA is present are seen in Figs. 39 and 41. 

Figures 38 and 39 represent a Q-switch concentration weaker than the 
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actual experimental concentration, while Figs. 40 and 41 represent 

stronger than actual experimental Q-switch concentration. 

Comparing Figs. 38 and 39, one finds that the presence of MBBA li

mits cavity intensity to half that seen in its absence. The pulse 

length is longer, as well. The stretching seen here is quite similar 

to that seen in Fig. 33 for a 70°C sample. Relatively mild SIER angles 

occur (~/4 maximum), Comparing Figs. 40 and 41, one finds that the pre

sence of MBBA limits cavity intensity to one-third that seen in its ab

sence. The pulse dynamics show behavior that is quite similar to that 

seen in Fig. 32 for a 50°C sample, In Fig, 41, the second pulse has not 

fully developed, but the tendency towards formation of a second pulse 

is seen quite clearly. Large SIER angles occur (~/2 maximum), indicat

ing substantial SIER losses. The results of our examination of Figs. 

38-41 are summarized below: 

1) In the absence of MBBA, increasing the Q-switch concentration 

results in greater peak intensities and shorter pulse lengths. 

2) The effects that changing the Q-switch concentration has on 

laser behavior with MBBA present, are largely due to 1) above. 

3) For higher Q-switch concentrations the higher cavity intensi

ties lead to greater SIER induced losses, delaying the release 

of energy from the laser active material much as increased cell 

length would. This increases the relative pulse stretching 

though the absolute pulse length is not any greater (due to the 

shorter initial pulse length). 

4) The energy stored due to 3) above for higher Q-switch concentra

tions, is released in a fashion that is similar to the case 

where the MBBA was at 50°C. In this case, the shorter initial 
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pulse length due to higher Q-switch concentration is equivalent 

to the longer response time due to lowering the temperature. 

5) For lower Q-switch concentration, the opposite of 3) and 4) 

above occurs. 

The final parameter to be studied is the saturable absorber relaxa

tion time. The comPuter calculations for a 400 nsec relaxation time can 

be seen in Figs. 42 and 43. The analysis is quite simple once we ob

serve that though the pulse is delayed somewhat, its shape is almost 

identical to that observed in Figs. 38 and 39. The obvious conclusion, 

of course, is that effects of increased Q-switch response time are equi

valent to the effects of decreased Q-switch concentration. 

The computer model for SIER induced pulse shaping using MBBA has 

been thoroughly analyzed at this point. We will present exPerimental 

data supporting these calculations in the following section. Before 

concluding this section though, we wish to make use of the formalism de

veloped for MBBA and transient response to evaluate a hypothetical quasi

steady state SIER inducible loss. This hypothetical material will sim

ply be MBBA with 'M + 0 replacing the true 'M' The model developed in 

this section can then be used directly to calculate the expected behav-

ior. 

The results for a 2.5 em sample length and a 10 em sample length 

are shown in Figs. 45 and 46. Figure 44 shows the previously calculat

ed behavior for a 2.5 em samPle length with the actual 'M (Fig. 27) re

drawn with a different time scale for easier comparison. In performing 

the calculations, the previously described reference values were used 

for all other parameters. Figures 44 and 45 can be compared to deter

mine the difference between a transient and a steady state SIER indue-

95 



ible loss. The steady state case is basically the same as the transient 

case 9 except that the initial peak and subsequent oscillations disap

pear. Instead, the cavity intensity peaks at a lower value progressing 

immediately to an exponential like decay. Physically, the steady state 

and transient cases can be viewed as overdamped and underdamped regimes 

of the same basic loss mechanism. 

As we increase the sample length to 10 em, we notice a very pleas

ant phenomena (Fig. 45). The maximum SIER angle only increases slightly 

with the result that cavity intensity is limited to a value that is one 

fourth the value observed for a 2.5 em sample length. The pulse length 

stretches by a comparable amount. This is exactly the behavior desired 

for pulse shaping. The basic shape of the pulse remains the same as 

cell length changes. The energy released in a pulse also remains fair

ly constant. Under such conditions. the pulse length can be changed 

substantially through changes in the limiting peak cavity intensity. 

while the pulse shape after such changes remaining completely predict

able. In order to determine the best way to set the peak cavity inten

sity, the relevant CAlculations done above for the transient limit have 

been repeated for the steady state limit. The results are essentially 

the same as found before, with any changes attributable to the damping 

of the transient oscillations. (Just like Fig. 45 is essentially the 

same as Fig. 44 with the initial oscillations damped.) Thus the conclu

sions drawn about how each of the important parameters affects cavity 

intensity remain valid and may be applied to the steady state limit. 

F. Experimental Results 

Figure 20 depicts the experimental setup. A brewster cut ruby rod 
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(~" x 4") oriented to lase in the horizontal polarization, was used for 

the laser active material. Two linear flashlamps provided pumping, 

These flashlamps were located at the two outer foci of a double ellipse 

reflector, with their output focused onto the ruby rod located at the 

center focus. Water jackets about the flashlamps and the rod allowed 

flowing water cooling. We used crypto cyanine as the saturable dye for 

Q-switching the laser. Different pinholes were tried, to determine the 

largest aperature size which could be used, that would consistently re-

sult in the fundamental (TE ) cavity mode. We found that a 1.75 mm dioo 

ameter pinhole worked best. The laser resonator was formed using a 100% 

mirror with a 10 m radius of curvature (which we will often refer to as 

the "back" mirror) and a SO% resonant reflector (which we may refer to 

as the "front" mirror). Naturally, the resonant reflector is flat. 

Transmission through the resonant reflector provides the normal means 

of extracting laser energy. References to laser output are references 

to the fields leaving the resonator via this route. These fields are 

monitored using a fast photodiode (200 psec rise time) with a Tektronic 

519 oscilloscope (300 psec rise time), 

The elements between the pinhole and the back (100%) mirror com-

prise the SIER elements. From left to right in Fig. 20 we have an air 

spaced Glan prism, a Fresnel rhomb, the MBBA sample, and a second Fres-

nel rhomb. The Glan prism serves the dual purpose of defining a defin-

ite polarization state and rejecting the polarization component induced 

through ellipse rotation. The Glan prism was oriented to pass horizon-

tally polarized light, to match the output from the laser active mater-

ial, We chose to use a Glan prism over other polarizers because high 

optical quality and resistance to damage were well suited for use inside 
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a laser cavity. The outside faces of theprismwere anti-reflection 

coated to minimize insertion losses. The requirement of high damage 

threshold required the use of the airspace configuration to avoid the 

need for cements. Though this caused higher insertion losses (due to 

the internal air-prism interfaces), the presence of the horizontal po

larization as well as the vertical polarization in the rejected beam 

from the Glan prism was useful in that we could better determine the 

actual cavity intensities. As shown in Fig. 20, the vertically and hor

izontally polarized fields leave the Glan prism spatially separated, al

lowing us to easily monitor both polarizations simultaneously. Both po

larizations were detected using fast photodiodes (200 psec rise time) 

with matched detector surfaces to simplify comparisons. For the hori

zontally polarized beam, the photodiode output was measured with a Tek

tronix 519 scope (300 psec rise time). For the vertically polarized 

beam, the photodiode output was measured with a Tektronix 7904 scope 

(1 nsec rise time). Though the 7904 was a slower scope, the variations 

in maximum vertically polarized intensity required the use of an adjust

able scope. 

As determined in Section IIC, the induced ellipse rotation depends 

on the ellipticity of the incident fields (Eqs. (51)-(53)). Basically, 

any retarder following the Glan prism will provide the required ellipti

cal polarization. The most readily available of the high quality retard

ers is the Fresnel rhomb, which is what we use. Varying degrees of el

lipticity can be obtained by rotating the fast axis around the direction 

of propagation. The entrance and exit faces are antireflection coated 

to minimize insertion losses. 

The second Fresnel rhomb serves to neutralize the effects of the 
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first Fresnel rhomb. The desired setting for this rhomb is such that 

with no ellipse rotation the SIER elements leave the fields horizontally 

polarized. Using Eq. (102), we see that this condition requires that 

(139) 

which is satisfied by the choice 

k = 0, 1, 2, .... (140) 

Conventional SIER setups use k = 1. However, for our purposes, the 

choice k = 0 proves more useful. This choice allows us to use the se

cond Fresnel rhomb to compensate for the beam displacement due to the 

first Fresnel rhomb (see Fig. 20). This way, we can vary the Fresnel 

rhomb settings without the need to reposition optical elements. 

Our MBBA sample was placed in a glass cell which was then sealed 

under a nitrogen atmosphere. Samples prepared in this fashion showed no 

change in the isotropic nematic transition temperature over a period of 

many months. This stability indicates that little if any deterioration 

of the MBBA occurs over that time period. Sample temperature was main

tained by use of a copper oven. Heating was controlled by a Yellow 

Springs temperature controller via ohmic heating. Temperature stability 

was maintained to .l°C. Sample length changes were achieved by changing 

cells. Cell orientation was carefully maintained so that the cell win

dows were perpendicular to the direction of propagation so as to intro

duce as little pertrubation as possible to the wavefront entering the 

sample. 
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Our laser operated reliably in a single TE transverse mode. 
00 

Longitudinal mode selection was not as reliable, with occasional instan~ 

ces of lasing in two adjacent modes. Such instances produced a very 

distinctive beating pattern in the laser output and were very easily re~ 

jected during analysis. With no liquid crystal present, 2.2 mj were 

emitted in a 70 nsec pulse. This corresponds to a saturable dye concen~ 

tration such that round trip transmission through the Q-switch cell due 

to saturable absorber is 61% at the instant lasing starts. (This can 

be measured via the increased pump energy needed to compensate for in-

sertion of the cell.) The choice of concentrations was severely limited 

by large insertion losses that accompany introduction of the SIER ele-

ments into the laser cavity. This raised the lasing threshold suffi~ 

ciently to require a reduction Q-switch dye concentration fromitsnor

mally higher value. As seen in the previous section, this choice of az 
is actually better for our purposes than the standard choice. Further 

reductions in concentration were undesirable as they led to double puls~ 

ing which complicated the analysis. 

The output of PD3 (see Fig. 20) was used to monitor laser perfor~ 

mance. The output of PDl and PD2 were recorded on polaroid film for 

permanent records. These photographs can be compared with the computer 

predictions (part d of Figs. 25-28, 30-46) to determine how well the ex-

perimental results support the theoretical calculations. 

~1ost of the parameters discussed in the previous theoretical sec~ 

tion remain important for experimental work. However, not all these 

parameters are freely variable. The decision to work with MBBA, the re~ 

strictions on Q-switch dye concentration (discussed above), and other 

laser constraints limit us to three free parameters: sample length, sam-
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ple temperature and Fresnel rhomb setting. Experimental data revealed 

that the Fresnel rhomb angle ¢
1

was a somewhat redundant parameter. Small 

angles were equivalent to small sample lengths. Large angles could not 

be used because the maximum value of induced loss was insufficiently 

large to insure operation in regions where inducible loss increased mon

otonically with intensity. Thus it was decided to treat ¢ as a set up 

parameter, that is, we would determine the best value of ¢ for our sys

tem and use that value to gather the remainder of the data. ¢ for our 

laser system was optimal at¢= 15°. 

The remaining parameters, sample length and temperature were varied 

systematically over reasonable values (0 < sample length < 5 em; 45° < 

T < 70°C). The fields rejected by the Glan prism were recorded for each 

set of values. In Fig. 47 can be seen some of this data. We chose to 

display only the data for which we have shown matching theoretical pre

dictions. The sequence 47a, 47c, and 47d shows the effects of changing 

sample length as temperature is held constant. The sequence 47b, 47c, 

and 47e shows the complimentary effects of changing temperature while 

holding sample length constant. These figures (47a-e) should be com

pared to their theoretical counterparts (25d, 32d, 27d, 28d, 33d respec

tively). The excellent qualitative agreement should be noted. This 

agreement gives us confidence that the model developed can be used to 

predict qualitative behavior. 

With good qualitative agreement, there is always the temptation to 

draw quantitative conclusions. We wish to caution the reader against 

this here for the following reasons: 

1) The computer theory blatantly ignores the discrete location of 

cavity elements and for the large part, spatial dependence of 
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the cavity fields, Though certain spatial features had to be 

accounted for to give reasonable results (such as spatially 

averaging the SIER transmission), the underlying laser rate 

equations still assume infinite plane waves. Our modifications 

have greatly improved the utility of the laser rate equations 

when applied to SIER induced loss but cannot totally eliminate 

inaccuracies due to the basic assumptions of the laser rate 

equations themselves. 

2) Self focusing has been totally neglected, As will be seen in 

Chapters IV-VI, self focusing is important for sample lengths 

~ 1 em when the sample is in the laser cavity. 

In regards to 2) above, we point out that self focusing made it impos

sible for us to determine an absolute intensity for Figs. 47b-e. In

stead, it was necessary to normalize the experimental peak intensity to 

the calculated value -- all the more reason not to make quantitative 

comparisons. Of course, the intensity scale for Fig. 47a is exact since 

there was no MBBA present to complicate matters. 

G. Conclusions 

In this chapter we have developed a computer model to describe 

SIER inducible loss in a laser cavity, In the model, we attempted to 

correct for the omissions found in previous models such as transient re

sponse and proper averaging of the SIER transmission. The results of 

the model show excellent qualitative agreement with experiment. Quanti

tative agreement was not possible due to complications caused by self 

focusing. A combined self focusing, SIER theory would have required 

several orders of magnitude larger computing facilities and much too 
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much programming development to be practical for this piece of work. 

Despite the lack of quantitative comparisons, the excellent quali~ 

tative agreement shows that the model is useful as a tool to predict 

what materials and what values each of the experimental parameters 

should take to provide the optimal effects. The most important conclu~ 

sions are summarized below: 

1 a) In MBBA, changes in temperature have little effect on pulse 

stretching. 

b) Steady state Kerr liquids provide much more effective stretch~ 

ing for the same x (3). This coupled with a) means that 

steady state materials should be used. 

2) Fresnel rhomb settings must be experimentally optimized for 

the particular setup chosen. Particular care must be taken not 

to use too large a setting. 

3) Q~switch liquid concentration must be chosen to match the re

sults desired. Varying Q-switch concentration can be a means 

to vary pulse stretching. 

The final point to be mentioned is the use of both a saturable absorber 

and an inducible absorber to "clamp" the output intensity. The calcula~ 

tions show that a prohibitively long cell length is needed to generate 

inducible losses from SIER at intensities near those necessary to bleach 

cryptocyanine. It is possible that other laser systems using higher 

bleaching intensity saturable absorbers could show this effect. In par~ 

ticular, the dyes used for Nd lasers meet this criteria. It would be an 

interesting experiment to combine such a saturable dye with cs
2

, for ex

ample, inside a SIER setup. The reader is warned that a much more so

phisticated Q-switch model than used in this chapter would be needed. 
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Figure Captions 

Table 2. Chart of various diffraction losses for our experimental set~ 

up at different aperature sizes. 

Fig. 20. Experimental setup for the ellipse rotation inducible loss ex~ 

periment. 

Fig. 21. Round trip transmission through the SIER cavity elements in 

the steady state limit. Both the unaveraged and the averaged 

values are shown. ¢ is the Fresnel rhomb angle, T is the 

* temperature, T is the isotropic to nematic transition temper~ 

ature, and L is the sample length. The sample is MBBA. 

Fig. 22. Parameters for calculating the change in optical path length 

due to the presence of a Fresnel rhomb. 

Fig. 23. Replacement of a medium of index of refraction n
2 

by an equi

valent medium of index of refraction n
1

, showing how the n2 

material shortens the effective cavity length (n
2 

> n
1
). 

Fig. 24. Equivalent symmetric cavity for the experimental area of Fig. 

20. The relevant resonator parameters are calculated. 

Fig. 25. Computer calculations, no MBBA. 

Fig. 26. Computer calculations, l1BBA sample length = 1 em. 

Fig. 27. Computer calculations, MBBA sample length= 2.5 em. 

Fig. 28. Computer calculations, MBBA sample length = 5 em. 

Fig. 29. Comparison of steady state and transient response of MBBA as 

a function of sample temperature. Curves are normalized to 

the response at 80°C and show the absence of critical diver-

gence in the transient case. 

Fig. 30. Computer calculations, MBBA sample length = 1 em, sample tem~ 

perature = 50°C. 
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Fig. 31. Computer calculations, MBBA sample length = 1 em, sample tern-

perature "' 70°C. 

Fig, 32. Computer calculations, ~lliBA sample length 2.5 em, sample 

temperature = 50°C. 

Fig, 33. Computer calculations, HBBA sample length 2.5 em, sample 

temperature = 70°C. 

Fig. 34. Computer calculations, MBBA sample length 10 em, Fresnel 

rhomb setting= 15°. 

Fig. 35. Computer calculations, MBBA sample length = 10 em, Fresnel 

rhomb setting = 22.5°, 

Fig, 36' Computer calculations, HBBA sample length 1 em, Fresnel 

rhomb setting = 7,5°, 

Fig. 37. Computer calculations, MBBA sample length = 1 em, Fresnel 

rhomb setting= 22.5°, 

Fig. 38. Computer calculations, no MBBA, 2 
.75. a4 = 

Fig. 39. Computer calculations, HBBA sample length 2.5 
2 .75. em, a4 = 

Fig. 40. Computer calculations, no MBBA, 2 
.50. a4 = 

Fig. 41. Computer calculations, NBBA sample length = 2.5 
2 .50. em, a4 

Fig. 42. Computer calculations, no MBBA, 'sA = 4 X 10-7 
sec. 

Fig. 43. Computer calculations, MBBA sample length = 2.5 em, TSA = 4 X 

10-7 
sec. 

Fig. 44. Computer calculations, MBBA sample length = 2.5 em, actual 'M' 

This is Fig. 27 redrawn with a different time scale. 

Fig. 45. Computer calculations, MBBA sample length = 2.5 em, steady 

state limit (TM + 0). 

Fig, 46. Computer calculations, MBBA sample length 10 em, steady 

state limit (TM + 0). 



Fig. 47. Experimental data for various values of temperature (T) and 

sample length (£). The intensities as seen at photodiodes 1 

and 2 are plotted versus time. 
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Pinhole Size Fresnel Number TE Mode Power Mode Power Loss TE
10 

Mode Power 
00 

Radius N Loss/Power (%) TE Mode Power Loss Loss/Pass (%) 
00 

(mm) a b a b a b a b 

.25 mm .10 .09 68% 75% 1.3 1.2 88% 90% 

.375 mm .22 .19 44% 53% 1.6 1.4 70% 74% 

.50 mm . 39 .33 28% 35% 2.0 1.7 56% 60% 

.625 mm .61 .52 15% 20% 2.4 2.0 36% 40% 

.75 mm .88 . 75 9% 12% 2.9 2.3 26% 28% 

.875 mm 1. 20 1.02 4% 8% 3.5 2.6 14% 21% 

1.00 mm 1.56 1.33 3% 6% 4.1 3.0 12% 18% 

Table 2. Diffraction loss for various aperature sizes. 
- -··~--·----------

Actual Cavity 

TE Mode Power 
00 

Loss/Pass (%) 

71% 

48% 

31% 

17% 

10% 

6% 

4% 

ED IFF 
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.06 
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IV. SELF FOCUSING IN A LASER CAVITY-HODEL 

A. Introduction 

As pointed out in the preceeding chapter, self focusing plays a 

major role in determining laser output characteristics when r1BBA is 

present in a ruby laser cavity. In this chapter, we present a model to 

describe this role. The model presented is fully general and may be 

applied to any material exhibiting intensity dependent self focusing 

when placed in a laser cavity. Because of the impracticality of devel

oping the spatially dependent laser rate equations needed to analyze 

the self focusing, an adequate computer model describing the dynamic 

features of the laser output was unavailable. Consequently, the work 

on self focusing places a stronger emphasis on experimental results 

than does the SIER inducible loss study. The large amount of experi

mental data and the complicated analysis needed to analyze it are pre

sented most logically as separate chapters (Chapters V and VI). 

B. Self Focusing Hodel 

Both the laser cavity and the self focusing process have been dis

cussed separately (Chapter II). Here, we seek to combine the two theor

ies. The interaction of the self focusing and laser cavity feedback 

can be classified into four regimes, depending on the relative degree 

of self focusing that occurs. When the self focusing acts to reduce 

the diffraction loss of the cavity, we have the energy limiter regime. 

When the self focusing acts to increase the diffraction loss (but not 

lasing threshold), we have the inducible loss regime. Intermediate be

tween these two regimes, we have a transition regime. And when the self 
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focusing causes a change in the lasing threshold, we have the variable 

threshold regime. We can change the operating regime most easily by 

changing the sample length. These names are descriptive and their sig~ 

nificance will become clear when we discuss each regime in detail. As 

implied by the above, self focusing interacts with the laser cavity via 

changes in spatial characteristics of the cavity field, especially 

changes in diffraction of these fields, This being the case, it is 

convenient to treat the cavity fields in terms of its two travelling 

wave components. In this approach, one follows one of these components 

as it makes a round trip passage through the cavity elements. Any ref~ 

erence to spatial size or spatial distribution of the cavity fields 

should be viewed as a reference to the spatial size or spatial distri~ 

bution of the appropriate travelling wave component. The advantage 

with this approach is the ease in dealing with expansion due to diffrac-

tion, or focusing and beam shrinkage due to self focusing. These are 

most easily pictured as travelling wave phenomena. Any use of the 

word beam inside the cavity will be an explicit reference to one of the 

travelling wave components. 

The energy limiter regime is characterized by smaller cavity mode 

size, improved cavity mode structure and smaller output beam divergence, 

as compared to that seen for normal operation. We use the term normal 

operation to refer to laser operation with no intensity dependent self 

focusing material present in the laser cavity. Consistent output char~ 

acteristics require transverse mode stability. Use of a sufficiently 

small aperature insures this stability by allowing only the TE cavity 
00 

mode to lase. The size of the aperature, together with resonator geo-

metry determines cavity diffraction loss. Physically, this loss arises 
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because the aperature is smaller than the cavity mode size, thus prevent~ 

ing part of the cavity fields from returning through the aperature. Dif~ 

fraction loss from normal operation can be seen in Fig. 48a. The corre~ 

sponding loss for the energy limiter regime can be seen in Fig. 48b. 

The fields shown in Fig. 48 are only an example, not actually observed 

fields. The effects are exaggerated for clearer viewing. The reduction 

in diffraction loss seen in Fig. 48b should be noted. (Since the fields 

do not expand as much, more gets back through the aperature.) 

We define the energy limiter regime to be laser operation where the 

self focusing material acts to decrease diffraction loss, such as the 

case shown in Fig. 48b. Aside from unusual configurations (such as im

mersing the entire cavity in the self focusing material), operation in 

the energy limiter regime requires weak self focusing. The rather ambig

uous quantifier "weak" in this case indicates self focusing where little 

if any shrinkage of the cavity fields occurs during a single passage 

through the self focusing material. For this limit, the effects of the 

self focusing material can be approximated by an intensity dependent 

lens (see Section IID). Operation in the energy limiter regime requires 

in addition that the induced lens be of sufficiently long focal length 

so diffraction after the focus is not worse than the original diffrac

tion without the lens. In Chapter II, an expression for the effective 

focal length of the induced lens (with MBBA) was determined (Eqs. (61)

(67)) as a function of time and cavity intensity in the limit of weak 

self focusing. Since the required values of cavity intensity will not 

be determined until Chapter VI, a numerical analysis must wail until 

then. Here we present a qualitative picture that should clarify the 

physics of the process and give an understanding for the experimental 

138 



motivation and interpretation. 

Initially, as the cavity fields are building up from noise, the in

tensity is low enough so no self focusing effects are observable. Thus, 

threshold conditions and the initial build up of cavity fields are un

changed from normal operation. As the intensity of the cavity fields in

creases, self focusing manifests itself as an induced lens whose focal 

length decreases as the intensity increases. This induced lens counter

acts diffraction of the cavity fields, becoming more effective as the 

focal length decreases (Fig. 48). As a result, feedback to the center 

of the laser active material increases while feedback to the outer re

gions decreases. (All comparisons are comparisons to normal operation.) 

By center, we refer to the axis of the laser rod and by outer regions, 

we refer to the portion of the laser rod far off axis. When feedback to 

these outer regions decreases sufficiently, lasing will no longer occur 

in these regions, reducing the active lasing volume. Further intensity 

increases will cause continued reduction of lasing volume as long as 

these intensity increases act to reduce diffraction (via induced self fo

cusing). 

The energy stored in the laser rod for release depends primarily upon 

the pumping process and absorption of this pump prior to the start of 

the laser pulse. Once lasing starts, the population inversion is deplet

ed so rapidly that any effects of the pump can be ignored. This means 

that the maximum energy available for lasing is independent of the ac

tual pulse dynamics. How much of this energy gets released, however, de

pends strongly on these dynamics. Since the stored energy is localized, 

only the energy stored in the portion of the rod that lases can be emit

ted as laser output. Thus, any reduction in active lasing volume will 
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be accompanied by a proportional reduction in output energy. This is 

why we choose to call this the energy limiter regime. As the cavity in~ 

tensity increases, the amount of energy emitted does not increase as ra~ 

pidly and thus the energy output is limited. For a longer sample of self 

focusing material, the reduction of lasing volume should occur more 

quickly. Thus, less energy will be emitted for a given cavity intensity. 

Again, this is consistent with the name "energy limiter regime." 

We next consider behavior of the on axis cavity intenstiy for this 

regime. Diffraction loss on axis comprises only a small fraction of the 

total on axis loss for our experimental setup (Eqs. (124) and (130)). We 

can use the experimental set up of Chapter III, since the set ups used 

for Chapters V and VI do not differ substantially and we seek here only 

a qualitative picture. The energy released from a small volume element 

on axis is proportional to n 
0 

-nf, the difference in initial and final 

normalized inversion population densities. The cavity loss enters in 

via the determination of nf (Eq. (137)). Because the diffraction loss 

is such a small fraction of the total loss, we expect the final inversion 

population density to change only inconsequentially from what it would 

be for normal operation. Thus, the total energy released from this 

small volume element on axis should be roughly the same as the total 

energy released with normal operation. (Self focusing in this regime 

serves to reduce diffraction loss but does not affect the remainder of 

the loss.) 

Though the energy released from the center portion of the rod does 

not change much, the dynamics of the pulse do. The extra feedback to 

the center of the laser rod is amplified by the laser gain, so it has a 

large effect. The result is a quicker release of energy stored in the 
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center sections of the rod. This means dynamically, that the on axis 

cavity intensity will rise faster, and have a greater peak value than 

for normal operation, while the energy released from the center portion 

of the rod is approximately unchanged. 

The utility of this technique lies in the inducible nature of the 

lens. We look at the cavity in a slightly different light to understand 

this utility. Using the ABCD matrices (see Chapter II), we can describe 

the combination of an induced positive lens with focal length f and a 

concave mirror with radius of curvature R, separated by a distance d as 

(141) 

which means we can replace the lens and mirror by a mirror with a radius 

of curvature R' 

(142) 

located at a distance 



d 
d' "" 

( 1- %) 
(143) 

from the location of the induced lens. It is informative to plot 1 -

L'/R' for the equivalent cavity versus 1/f. This is done in Fig. 49. 

L' is, of course, the length of the equivalent cavity 

L' = L - d + d' (144) 

We use the values given in Fig. 20 fOr d and L. Four values of R are 

shown. For the moment, attention should be directed at the graph label-

led "actual (R"" 10m)." We see that the equivalent cavity starts out 

nearly plane parallel (f = 00) and as f decreases changes towards a con-

focal cavity (1- L'/R' = 0). Graphically, the energy limiter regime is 

the region from f = oo to whatever f gives 1- L'/R' = 0 (confocal cavity). 

The reason for this should be clear; minimum beam size and diffraction 

loss occur for a confocal cavity (see Fig. 16). Thus any smaller f will 

result in increased diffraction loss. 

Traditionally, the advantage of using a plane parallel cavity is 

the ability to easily select the TE cavity mode with an aperature. 
00 

The advantage of a confocal cavity lies in the smaller beam size and 

smaller output divergence angle. Operation in the energy limiter regime 

offers the advantage of both. Near threshold, where mode selection oc-

curs, self focusing effects are negligible. So starting with a nearly 

plane parallel cavity gives good mode selection. As cavity intensities 

increase, the induced lens changes the effective cavity towards a confo-

cal cavity. If the self focusing material parameters have been properly 
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selected, the peak of cavity intensity will occur when the effective ca

vity configuration is confocal, thus allowing most of the energy to be 

released near confocal conditions with an accompanying minimal output 

beam divergence. 

Looking at the self focusing process as one of changing effective 

cavity configurations underscores the importance of the starting cavity 

configuration. We show the effects of an induced lens for different 

starting cavities in Fig. 49. From Fig. 49, several conclusions can be 

drawn. Since the self focusing for the energy limiter regime acts to 

move the cavity from a plane parallel configuration towards a confocal 

one, the closer to confocal the original cavity is, the less effect the 

self focusing will have. The intensity range over which the laser will 

continue to operate in the energy limiter regime is largest for a plane 

parallel cavity and decreases until it becomes nonexistent for a confocal 

cavity. If the cavity starts out with minimum possible diffraction loss 

(confocal cavity), any induced lens can only act to increase the loss. 

Thus, operation in the energy limiter regime will most likely favor a 

starting configuration close to plane parallel. This is what we use. A 

concentric cavity is also a possibility assuming the initial small in~ 

crease in diffraction loss can be overcome. This choice is less desire

able because of the weaker (i.e. slower) decrease in diffraction loss 

than for the plane parallel cavity. 

So far, the discussion has been totally general and applies to any 

self focusing material. We now consider the actual material we use 

(MBBA) and features particular to its use. The immediate consideration 

is the response time of ~1BBA which with our laser system indicates a 

transient response. Since we are dealing with weak self focusing, the 
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transient case and the quasi~steady state case qualitatively do not dif~ 

fer greatly. In both cases, the self focusing has the effect of a thin 

lens. The precise behavior is described by the ABCD matrix given in Eq. 

(67). The primary qualitative difference is the temporal behavior of 

the induced on. While the quasi-steady state induced on will follow 

closely the cavity intensities, as the material response time becomes 

comparable to or exceeds the pulse width, the peak in induced on will 

occur after the peak in cavity intensity. This delay will be longer for 

larger material response times. The decay of the induced on from its 

peak value will depend primarily on the material response time. The lat

ter causes the most noticeable effect on laser output. For very long 

material response times, the peak on induced will decay very slowly 

(much slower than the cavity intensity will drop) so the trailing edge 

of the laser pulse will experience the peak on. In terms of cavity con

figurations, this means that if the cavity is confocal at the peak, it 

will remain confocal for the remainder of the pulse. For shorter mater~ 

ial response times, on the order of the pulse lengths. the induced on 

will decay substantially during the trailing edge of the laser pulse. 

This means that if the cavity configuration was confocal at the peak on, 

the trailing edge will see a cavity that is between confocal and plane 

parallel. Since cavity mode size grows as the cavity departs from confo

cal, the areas of the laser rod which were inhibited from lasing will 

again receive feedback. Since these sections have not yet released most 

of their energy, this return of feedback can induce a second laser pulse. 

The size of this second pulse should get larger as the material response 

time decreases from very much larger than the pulse width to a size come 

parable to the pulse width. (Lessdelaybefore feedback to the previous-
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ly inhibited laser volume starts.) 

A second feature that MBBA possesses is its critically divergent 

nonlinear response and relaxation time. We found in Chapterii~ for the 

SIER induced loss, that the divergent behavior in both the relaxation 

time and the nonlinear response offset one another, leaving an effective 

nonlinear response which was only weakly dependent on temperature (Fig. 

29). We expect to find a similar effect here, with the size of the in

duced on only weakly dependent on temperature. Just as for the SIER in

duced loss, we expect that the greatest effect on the process attribut

able to temperature will be the modification of the dynamics of the pro

cess via the change in relaxation time. A description of how different 

relaxation times should affect the laser output was given in the preceed

ing paragraph. Using Table 1 or Fig. 4 to determine the relaxation time 

of the MBBA and assuming a pulse half width of 15-20 nsec, we see that 

at 50°C we expect a very small, if any, second pulse. The second pulse 

should become noticeable around 60°C, since the relaxation time is near

ing pulse half width in length. This second pulse should be quite no

ticeable at 70°C where the relaxation time is less than the laser pulse 

half width. 

For higher cavity intensities, longer sample lengths, larger non

linear constants or any combination, the laser operation moves out of 

the energy limiter regime to a transition regime. Experimentally, we 

utilized longer sample to shift to this regime. Referring to Fig. 49, 

the transition regime is specified as operation with the induced cavity 

configuration between confocal and concentric (- 1 < 1- L'/R' < 0). 

Qualitatively, this regime is quite similar to the energy limiter regime. 

Though the exact behavior of the laser output will depend on the initial 
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configuration, its analysis does not change greatly. Thus, we will lim

it our discussion to the actual experimental set up (labelled actual on 

Fig. 49). From Fig. 16, we see that cavity diffraction loss is strongly 

dependent on cavity configuration near the plane parallel configuration, 

and only weakly dependent near the confocal configuration. Since the ca

vity configuration in the transition regime stays close to confocal, we 

expect only mild changes in laser output. These changes should be simi

lar in nature to the second pulse seen in the energy limiter regime. 

For both cases, increased diffraction loss with an accompanying increase 

in feedback to the outer portions of the laser rod is responsible for 

this second pulse. One important qualitative difference exists. For 

the energy limiter regime, the second pulse occurs as the cavity inten

sity decreases, while for the transient regime this pulse occurs at peak 

cavity intensity. We expect, therefore, that the second pulse will be 

larger and take less time to reach its peak intensity in the transition 

regime. (Larger cavity intensity when feedback to the outer sections of 

the ruby rod starts.) 

For still larger cavity intensities or longer cell lengths, laser 

operation takes place in the inducible loss regime. Laser behavior in 

this regime is quite similar to that seen for SIER inducible loss. As 

cavity intensity increases, the diffraction loss increases, thereby lim

iting the cavity intensity. The inducible loss regime is characterized 

by moderate self focusing. By moderate self focusing, we refer to suffi

ciently strong focusing so that the cavity fields leaving the sample will 

focus at or before the 100% rear mirror. This focusing can occur with 

or without an accompanying shrinkage of the cavity fields during a single 

pass through the sample. The induced diffraction loss increases mono-
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tonically with cavity intensity once the inducible loss regime is 

reached, leading to pulse stretching. As with SIER induced loss~ this 

pulse stretching is due to the "capping" of cavity intensity due to the 

induced loss. As sample length is increased, this limiting intensity 

will decrease. Using MBBA as a sample, we expect to see an overshoot of 

this limiting intensity followed by damping to an equilibrium behavior 

as typical of transient response. 

An absolute limit for the sample length is given by the decrease of 

the limiting intensity to a value below laser threshold intensity. As 

the sample length approaches this limit, the self focusing will be suf

ficiently strong near laser threshold intensities to affect the threshold 

conditions. This regime is the variable threshold regime. It is charac

terized by substantial changes in the amount of pumping needed to start 

the lasing process. We mention this regime simply for completeness; in 

general it is to be avoided as it provides no useful properties and sub

stantially increases pump energy requirements. 

C. Conclusions 

In this chapter, we have given a qualitative picture for self focus

ing in a laser cavity. This picture will guide us in the choice of ex

periments needed to more fully understand the phenomenon. These experi

ments will allow a self consistent quantitative model to be determined. 

In the following chapter, various experiments will be described and the 

data presented. This data will be analyzed in Chapter VI. From the ex

perimental results, we have seen that significant SIER induced loss can 

occur for sample lengths on the order of 1-2 em. At these lengths, the 

self focusing induced effects are those of the energy limiter and trans-
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ient regimes. Thus, longer sample lengths are needed to operate in the 

self focusing inducible loss regime than for SIER inducible loss. This 

together with the complications of a changing cavity configuration means 

that SIER inducible loss is the preferred means of obtaining an inducible 

loss. Because of this, our experimental work will concentrate primarily 

on the energy limiter regime. This regime offers the greatest promise 

in terms of utility. 
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Figure Captions 

Fig. 48, Comparison of cavity diffraction under normal operation 

(a) with cavity diffraction in the energy limiter regime (b). 

Both (a) and (b) have been exaggerated for viewing clarity. 

Fig. 49. 1- L'/R' of a cavity with an induced lens replacing the MBBA 

cell. We plot 1- L'/R' versus the inverse of the focal 

length of the induced lens for various starting cavity config

urations. Cavity parameters are as indicated. 
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Figure 48 

(a) 
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V. SELF FOCUSING EXPERI}lliNTAL SET UPS AND DATA 

A. Introduction 

In this chapter, we describe various experiments we have done to 

better understand intracavity self focusing. For each experiment we 

give the motivation for the experiment, the set up used, the data taken 

and the techniques used to reduce the data. The experiments can be 

grouped as follows: 

Section B ~ Mode size vs. sample length 

C - Time dependence of total output power for different 

sample lengths 

D - Temperature dependence for a fixed sample length 

E - Mode fluctuation 

F - Origin of secondary peak 

G- Cavity fluence at different•cavity locations. 

Actual analysis of the data will be done in Chapter VI. 

The basic experimental set up is shown in Fig. 50. The laser source 

is a ruby laser Q-switched by a saturable absorber, cryptocyanine. The 

laser rod was brewster cut with a 50% resonant reflector as the output 

coupler. This resonant reflector provided longitudinal mode selection. 

The second mirror had a 10 m radius of curvature with a 100% reflecting 

dielectric coating. Spatial mode selection was provided by the use of 

a 1.7 mm pinhole. The unperturbed laser output was 2.7 mj into a 45 nsec 

pulse. The He-Ne laser was used for alignment, the photodiode for re

cording output power and the camera/pellicle pair for recording the spa

tial distribution of the cavity fields. 

Photodiode output was monitored on a Textronix 519 oscilloscope and 
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recorded on high speed polaroid film. A vacuum photodiode with an Sl 

surface was used, providing a 200 picosecond response time. Together 

with the scope response time of 300 picoseconds, we have an overall time 

resolution of 0.5 nanoseconds. This was more than sufficient to observe 

the 20-40 nanosecond ruby laser pulses. From its position at the laser 

cavity output, the photodiode provided spatially integrated, time re

solved profiles of laser output power, to compliment the data obtained by 

the 35 mm camera/pellicle combination. 

Using a pellicle enabled us to couple out a fraction of the cavity 

fields, while perturbing these same fields to the smallest degree pos

sible. The light reflected by the pellicle passed through a 5 em lens, 

located 16.5 em from the film plane of our 35 mm camera. This provided 

a small magnification (- 2.3x). Kodak panatomic-X film was chosen for 

its good resolution (- 5 ~m) and large latitude or range of linear re

sponse (- 10 f-stops or 3 orders of magnitude). Care was taken to devel

op related rolls of film together, and to keep developing times and con

ditions as similar as possible for different batches. We scanned the neg

atives using a PDS microdensitometer at 50 ~m resoltuion. A full two

dimensional scan was performed, and the data transmitted to a computer 

for processing. This computer processing recreated the spatial profile 

of the cavity fluence. 

The process described above to determine cavity fluences was tedious 

and time consuming. In those instances when only a rough indication of 

the cavity mode size was needed, we used a much cruder but quicker me

thod. This method used the size of the burn spot on a piece of exposed 

polaroid film as a measure of cavity mode size. The burn spot is gener

ated by placing the exposed film directly in the path of the laser out-
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put. In addition to giving a rough measure of cavity mode size, the 

burn pattern also served as a monitor for the spatial mode composition 

of the cavity fields. For our experiments, the burn patterns were taken 

a point immediately in front of the He~Ne laser, thus allowing the signal 

to reach the fast photodiode simultaneously. 

Temperature control for the MBBA cell was provided by a Yellow 

Springs temperature controller together with an oven surrounding the 

cell. This enabled us to maintain the temperature to O.l°C. The oven 

and cell were made of stainless steel to avoid NEBA reaction with the 

cell walls. Windows were 3/8 inch fused silica anti~reflection coated 

to minimize insertion losses. Large variations in cell length were 

achieved by switching cells while small changes were achieved by tilting 

the cell. 

B. Mode Size vs. Sample Length 

One essential requirement is to establish that the sample, MBBA in 

our case, indeed is responsible for the effects seen. A simple method 

of verification is to change the length of the MBBA cell while monitor~ 

ing any induced changes in laser output. Using the basic set up shown 

in Fig. 50 and described in part A of this chapter, we measure the cavity 

mode size as the cell length is varied. The simpler technique which 

measures the size of the burn spot on polaroid film was used to determine 

this mode size. As explained in Chapter IV, this mode size will vary 

over the duration of the pulse. However, most of the energy will be re

leased in a mode whose size corresponds to the peak of laser output, 

This makes it easy to pick out this mode size when examining the burn 

spots. The cavity mode sizes as measured using burn spots one meter from 

154 



the cavity are shown in Fig. 51. Clearly there is a strong dependence 

on MBBA sample length. 

C. Time Dependence of Output Power for Different Cell Lengths 

Simultaneously with the data taken for part B, the output power as 

measured at the photodiode (see Fig. 50) was monitored. The time depen~ 

deuce of this output power for three different sample lengths (1 em, 

1.75 em, 5 em) can be seen in Fig. 52 together with the data when no MBBA 

is present at all. Here again, a definite change is seen as sample 

length varies. The spatial mode structure as determined by the shape of 

the burn pattern of part B above indicated excellent spatial mode selec

tion. The data of Figs. 51 and 52 will be used to verify the qualita~ 

tive aspects of the proposed model in Chapter VI. 

D. Temperature Dependence at Fixed Cell Length 

To understand how the self focusing action in the sample changes la~ 

ser output, it is best to study the simplest of the regimes. This, of 

course, is the energy limiter regime. From Fig. 51, it appears that a 

sample length of 1 em should be ideal for this purpose. (Recall from 

Chapter IV that mode size should be smallest at the sample length giving 

the optimal energy limiter operation.) Having selected a cell length, 

we are interested in seeing how changes in sample temperature will affect 

laser operation. This information is of value because of the strong tem

perature dependence of the MBBA material properties. It is important to 

know how this temperature dependence will manifest itself. 

As in parts B and C of this chapter, we use the basic set up of Fig. 

50. The output power was monitored at the photodiode while cavity mode 
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structure and mode size was monitored by examining the burn spot on a 

sheet of polaroid film placed directly in front of the He-Ne laser. 

(This also helps protect the He-Ne tube from the high intensity ruby la

ser output.) The results are shown in Fig. 53. In parts a-g, we have 

plotted the output power of the laser as a function of time. In part h, 

we have shown the size of the burn spot for various sample temperatures. 

The lower set of points for Fig. 53h represents the mode size when laser 

output power is at its peak, while the upper set of data points repre

sents the total size of the burn spot. As will be seen in later analy

sis, both sets of points provide support for the proposed model. 

E. Mode Fluctuations 

Three major sources of fluctuation affect the shot to shot stabil

ity of the laser system and hence the reproducibility of any results 

seen. It clearly is desirable to eliminate these fluctuations, but this 

frequently can prove to be exceedingly difficult and time consuming. A 

more easily attained goal and one nearly as effective is to identify the 

effects of these fluctuations and thereby learn how to screen out the 

fluctuations before any analysis is done. The sources of fluctuation 

can be divided into intensity fluctuations, spatial mode fluctuations, 

and longitudinal mode fluctuations. We will consider each source in 

turn and discuss how it was handled. 

Under the classification of intensity fluctuation, we include any 

change in laser output which cannot be associated with mode fluctuations. 

Typical causes are varying pump absorption, temperature fluctuation in 

the active medium or misalignment of the laser. This source of fluctua

tion was difficult, but not impossible, to eliminate. Careful attention 
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to alignment, flashlamp condition, flashlamp placement, the orientation 

and positioning of intracavity elements, the time interval between pulses, 

and the power delivered to the flashlamps was sufficient to substantially 

reduce intensity fluctuations to < 1% over the short term (5-10 minutes) 

and< 10% over the long term (1-2 days). This reduction lowered errors 

induced by intensity fluctuations to a level much below than that gener-

ated from the mode fluctuations. What little fluctuation remained could 

easily be normalized. 

Spatial mode fluctuations encompass both the change in the trans-

verse distribution of energy in a laser cavity and power fluctuations re-

sulting from these changes. Use of a pinhole properly centered and care-

ful alignment of the laser produced a relatively pure TE mode. Hade 
00 

quality could be easily monitored by examination of the burn spot on a 

piece of exposed polaroid film. Because of this relatively pure TE 
00 

mode structure output power fluctuations due to transverse mode fluctua-

tion were very small. Occasionally, a pulse with a large admixture of a 

higher morder mode occured. When this happened, the reduction in lasing 

volume due to self focusing was inhibited, which could clearly be seen 

in the burn pattern on the polaroid film. The result was a dramatically 

increased output power. This effect allowed us to easily discriminate 

against such pulses, retaining only the relatively pure TE pulses for 
00 

analysis. Though we were able to effectively eliminate spatial mode 

fluctuation, substantial errors remained manifesting themselves as devia-

tion from cylindrical symmetry expected for TE modes, local hot spots 
00 

in the energy distribution and small changes in overall mode size. 

These problems can be traced to imperfections in the ruby rod, dust par-

ticles in the cavity, defects in the surface of the pellicle and damage 
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to the windows or coatings of the various intracavity elements. As such, 

the errors cannot easily be removed and cannot easily be corrected for. 

The best that can be done is to average over the flaws seeking to recre~ 

ate the energy distribution which would have been seen, given a perfect 

cavity. This was done and the errors could be greatly reduced, in ef~ 

feet, but not eliminated. 

Longitudinal mode fluctuation represents the presence of two or more 

longitudinal modes in the cavity rather than a single mode. The output 

etalon serves as the primary mode selector. The combination of this re

sonant reflector with the natural lineshape of the ruby line is suffi

cient to achieve single mode operation (see Chapter IIE). However, it 

is necessary to take proper precautions, among which are operation in a 

single transverse mode and not pumping the laser too hard. By this lat

ter statement, we mean that the laser is to be operating above threshold 

but not excessively so. This is usually sufficient to limit lasing to 

one or two modes. Unfortunately, the reflection peaks of the etalon 

shift with temperature. This means that because our set up did not sta

bilize the temperature of the resonant reflector, it was impossible to 

guarantee a single mode -- there always being the possibility that two 

adjacent modes will lase symmetrically about the etalon peak. However, 

with only two modes, it is easy to detect the presence of the second 

mode. When both modes lase, they will beat together modulating the out

put at the beat frequency, which is clearly seen. Thus, it is simple to 

reject the data which corresponds to multiple modes, leaving only the 

single mode data for analysis. By this means, we successfully neutralize 

any errors due to longitudinal mode fluctuation. 
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F. Origin of Second Peak 

Looking again at Fig. 53, we see the very prominent second peak 

that develops at the higher temperatures. This peak is predicted by the 

theory and it would be useful to determine experimentally the origin of 

this peak. Ideally, we would use a gate which would admit only a select

ed portion of the pulse. Shifting the gate would then allow us to gener

ate a motion picture of the spatial evolution of the laser pulse. These 

measurements could also be made for the cavity fields, giving a clear 

picture of the progression for cavity fields as well. Unfortunately, 

using a saturable absorber Q-switch introduces a jitter in the start 

time of the pulse, which is greater than the length of the pulse. It was 

therefore impossible to synch the gate to any external electronics. Com

bined trigger delay and Pockel cell response time was sufficiently long 

so that we could not use the laser output itself to trigger the Pockel 

cell either. Because of this impossibility of synchronizing the gate, 

we were unable to implement this more favorable technique of determining 

the data. It should be pointed out that this technique could have been 

implemented in a system utilizing a Pockel cell Q-switching technique. 

For the purposes of this experiment, it was considered impractical to 

switch over to such a system. The method of Q-switching plays a major 

role in any intracavity studies and this experiment was the last data ob

tained. (Chronologically, this experiment followed that of section G.) 

The large quantities of data already accumulated using a saturable absor

ber Q-switch rendered any change in Q-switch technique an unreasonable 

waste of the data collected and unfeasible in terms of time needed to 

redo the entirety of the experiments. Thus, we use a less precise tech

nique to obtain our motion picture, leaving the better technique to be 
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implemented in some future experiment. 

The technique we used measured the light transmitted through a pin~ 

hole, whose size was lesser than the spatial extent of the beam. By 

translating the pinhole, it is possible to measure the cavity power ver

sus time for the different spatial elements of the beam cross section. 

The set up used can be seen in Fig. 54. The orientation of the pellicle 

is such that the travelling wave component of the cavity propagating 

from the 100% mirror towards the laser rod was measured, The pinhole 

size and lens focal length were chosen to give a reasonably large signal 

at the photodiode when the pinhole is positioned near the edge of the 

beam. This resulted in a pinhole size roughly 10% of the spatial extent 

of the beam when it arrives at the pinhole. Translation of the lens 

shifted the beam across the pinhole. Data were taken for three posi

tions of the pinhole with respect to the beam, as shown in Fig. 55. The 

data corresponding to these positions can be seen in Fig. 56. The posi

tions a, b, c in Fig. 55 correspond to parts a-c in Fig. 56. The ordin

ant for Fig. 56d is output power of the laser and is shown for comparison 

purposes. Figures 56a-c, on the other hand, plot cavity power (power at 

photodiode corrected for pellicle reflection and loss at lens/air or 

prism/air interfaces). Once again, a burn spot on polaroid film was used 

to monitor cavity spatial mode structure. Care was taken to use pulses 

exhibiting identical burn patterns and total output power for the com

parisons in Fig. 56a~d. 

G. Cavity Fluence at Different Cavity Positions 

We have saved until the last the most important of the data taken 

the detailed determination of the spatial distribution of the laser 
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cavity fields, both in the presence and absence of MBBA. It is this 

data that will enable us to make semi~quantitative comparisons in Chap~ 

ter VI. The analysis is quite complicated and we will include the por-

tion of the analysis having to do with optical propagation of Gaussian 

beams and other data reduction here, to avoid confusion in Chapter VI. 

This section will first present the data with an explanation of how it 

was obtained. This will be followed by an outline of the analysis. 

Finally, we will present the detailed analysis. 

The spatial distribution of the cavity fields was measured by re-

fleeting a small fraction of the fields (2-3%) out of the cavity with a 

pellicle and projecting these fields onto photographic film, as shown in 

Fig. 50. With the pellicle oriented as shown in Fig. 50, the travelling 

wave component travelling away from the 100% mirror and towards the ruby 

rod is recorded. With a 90° rotation in pellicle orientation, we record 

instead the travelling wave component travelling away from the ruby rod 

and towards the 100% mirror. Both orientations of the pellicle were 

utilized at the six positions labelled 1-6 in Fig. 57. Insertion losses 

for the pellicle make it undesirable to use more than one pellicle, so 

the data was obtained using separate pulses, moving the pellicle after 

data acquisition was completed for each position. 

Each photograph taken records the energy/unit area incident on the 

film. Thus, by analyzing the film, we can determine the cavity fluence 

~(r,e) through a plane perpendicular to the cavity axis and passing 

through the pellicle position. The cavity fluence is related to the ca-

vity intensity by 

~(r,e) 

~ 

~ I(r,e,t)dt 
~ 

(145) 



where r,e are polar coordinants in the plane described above and I(r,e,t) 

is the intensity of the cavity field. Of course, both~(r,8) and I(r,e, 

t) refer to the travelling wave component being recorded. We choose r = 

0 to be the intersection of the plane and the cavity axis. Due to the 

predominance of the TE mode, the fluence is maximal for r = 0 and to a 
00 

large extent cylindrically symmetric. We show a computer recreation of 

two of the photographs in Figs. 58 and 59. These photographs were taken 

with the pellicle in position 1 oriented as shown in Fig. 50. Figure 58 

was taken with no MBBA present, while Fig. 59 was taken with it present. 

The expected reduction of the lasing volume can apparently be seen in 

Fig. 59, where there clearly is a bright central spot or region surround-

ed by a much weaker "halo. 11 This implies that lasing action has been re-

stricted in some fashion by the MBBA, particularly since the "halo" has 

much the same size as the spatial cross section of Fig. 58 and thus is 

likely to have resulted from lasing action before self focusing became 

effective. The area represented is roughly 4 mm in diameter on the film 

and the density of print corresponds roughly to the density of the film 

negative. 

Each of the photographic negatives was analyzed using a PDS scanning 

microdensitometer. A 50 ~m square window was used in conjunction with a 

50 ~m step size to give complete coverage of the image. We scanned a 

7.5 mm x 7.5 mm square containing the 4 mm image with a two-dimensional 

scan pattern, recording the density at each of the 22,500 scan points 

onto magnetic computer tape. Figures 58 and 59 were constructed using 

two of the data files so generated. The data taken by the PDS microden-

sitometer (i.e. the data values on computer tape) will be considered the 

starting point for our analysis. 
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In the analysis that follows, we will follow a systematic procedure 

whose end goal is a determination of the Gaussian mode size inside the 

cavity. The steps involved are as follows: 

1) Convert densitometer output units to actual physical units. 

Correct for any errors introduced by the photographic film. 

2) Determine mode size at the film. 

3) Use results of 2), apply standard equations for propagation of 

Gaussian beam to determine mode size in the cavity. 

A typical film response curve for Kodak Pan~X film can be seen in 

Fig. 60, where we plot the density of the photographic negative as a 

function of the log of the energy fluence falling on the negative. The 

coordinants r', e' refer to polar coordinants on the negative, with r' = 

0 on the negative corresponding to r = 0 in the cavity. Sf' is the 
0 

threshold fluence for which the film first starts responding to the in-

cident light and$' is the fluence for which the film response saturates. 
m 

There is roughly a three order of magnitude range of fluence between&f' 
. 0 

and$', for which the negative density varies linearly with the log of 
m 

the incident fluence, Peak incident fluences were between§" and $ 1 in 
o m 

value. This means that a correction factor for the toe of the film re~ 

sponse curve will be required, but that one for the shoulder will not be. 

The densitometer reads the film densities and generates a numeri-

cal output in nonphysical "densitometer units." These "densitometer 

units" D (r' ,8') vary linearly with the actual film density. 
0 

(146) 

If we replace the film response curve (Fig. 60) with the linear approxi-
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mat ion 

"'= {a" log q¥' ( r' , e ' ) /§'~) + S 
11 

D(r' ,e ') :::::: 
s" 

we have for the densitometer output 

D
0

(r' ,8') "" 
{: log(';<' (r' ,e')l'l'"~) + e 

a = a'a" 

S =a'S" + s'. 

#''(r',e') ~.¥' 
0 

.Y:'(r',e') <$' 
0 

.¥' (r' ,e') ~$' 
0 

(r',e') <§' 
0 

(147) 

(148) 

The problem of converting D (r',e') to physical units is thus seen to be 
0 

one of finding a, S, and$'. 
0 

The determination of a, S, and$' depends on relating D (r' ,e') to 
0 0 

some physical quantity whose size can be determined. The only quantity 

which can be easily measured is the total output energy present in the 

pulse. (The quantity must be a time integrated quantity, such as energy 

rather than power, because the film density measures fluence, also a 

time integrated quantity.) The energy related to the fluence by 

21T 00 

E = Jl g;(r,e)rdrdey 
0 0 

= yC§(r = 0) (149) 

where we have defined a quantity C, which is the spatial integral over 

the cavity fluence profile: 
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2TI 00 

l r §( e) 
c = 

0 
Jo §(~', O) rdrde (150) 

andy is the ratio of output energy to cavity energy. It is important 

to distinguish between the unprimed§'s, which refer to cavity fluences, 

and the primed§''s, which refer to film plane fluences. The cavity 

fluence is related to that of the film plane by 

C~' (r' = 0) =/YC§(r = 0) (151) 

where /Yis the energy transport from the cavity to the film (i.e. frac~ 

tion of cavity energy reaching the film). C' is equivalent to C, but 

defined at the film plane. It is now possible to relate the densitome~ 

ter output to the energy E. 

D (r' 
0 

= 0) = et log~(r'""' 0)/$') + 8 
0 

=a. log(E/1 mJ) +a. log(l mJ • 9'/yC'§') + J3, 
0 

By plotting D (r' = 0) vs. the corresponding E's, we can do a least 
0 

(152) 

square fit to Eq. (152) to determine a.. The unavoidable long term inten-

sity fluctuations can be put to good use here, providing the range in 

energy content needed for a good fit. (Recall from section VE that we 

eliminated short term fluctuations.) The data taken for the various pel-

licle positions shows this spread of energies and is used for the pur-

pose. Unfortunately, the presence of the C' in the expression of Eq. 

(152) requires the use of data for which C' varies only weakly, or not 

at alL 
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After examination of the data, it was determined that the bright 

central region containing most of the energy and seen with HBBA in the 

cavity, would fit this criterion. The presence of the HBBA is sufficient 

to substantially reduce diffraction in the cavity and thus reduce the 

change in C' between data taken for the different pellicle positions. 

Looking at the data, we see that the spatial profiles may be grouped as 

follows: 

CD 

1: ~ component travelling towards mirror 

G> 

:I 
[?tJ 

[5] component travelling towards rod. 

[ill 

The numbers refer to pellicle position. These groupings are empirical 

and within each grouping the C''s do not seem to vary significantly. 

However, the C''s do seem to change between the groups. Thus, we must 

do a fit for each group separately. Since the C' appears only in the 

constant term of Eq. (152) and not in the log(E/1 mJ) term, we expect 

the same a for all the groups. 

0) as a function of log(E/1 mJ). 

In Fig. 61, we plot the various D (r' = 
0 

We do a linear least squares fit for 

each of the four groups above, requiring the same slope a for all four 

groups, but possibly different intercepts. The resulting fit is seen 

superimposed on the data points in Fig. 61. The final value determined 

for a is 
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a = 115.4 densitometer units. (153) 

The intercepts at log (E/1 mJ) = 0 also have significance and this will 

be discussed at the end of the chapter. 

Having determined a, it is now possible to convert D (r' ,8 1
) to log 

0 

~(r',e')/&r~) for all our photographs by using Eq. (148). S being the 

background, can be easily determined by averaging over the film density 

where no signal is present. As mentioned in section VE, there is a 

shot to shot departure from perfect cylindrical symmetry. This deviation 

is small and appears random (as opposed to systematic). Therefore, we 

cylindrically averaged the data. Two examples of the averaged and con-

verted data are seen in Figs. 62 and 63. These correspond to the raw 

data of Figs. 58 and 59. 

Consider once again Fig. 60. Near the toe region, our approximation 

in Eq. (147) is not accurate, predicting much too sharp a threshold. In-

stead the slope a' goes smoothly to 0 nearJr'. Because of the gradual 
0 

threshold, information is contained in the toe region which can be ex-

tracted if one knows qualitatively how much weaker the response in the 

toe region is compared to the response in the linear region. The proce-

dure for determining the toe response is to expose the film to a known 

spatial pattern and compare the measured film densities to the known in-

tensities. The equivalent technique for our experiment is to use the 

photographs taken with no MBBA in the cavity to determine the toe re-

sponse. A d . 11 k th 18 , 29 h . 1 d. .b . ccor lng to we nown eory, t e spatla lstrl utlon 

of fields in the cavity for a TE mode should follow a Gaussian shape. 
00 

Thus, the fluence&r'(r',e') falling on the film with no MBBA present 

should also follow a Gaussian shape. We expect 
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3' ( r ' , e ' ) = :JJ:' ( r' 
2 ,2/ 2 = O)e~ r w 

D
0 

(r' ,8 1
) = a log~ (r' 

2 2 = 0)/:!J:') ~ 2ar' /w + S. 
0 

(154) 

Thus, the density on the film should follow a quadratic behavior with r'. 

It is now a simple matter to fit the densities from the linear re-

sponse region of the film curve to a parabola, extrapolate the parabola 

into the toe region, and then compare the fluences calculated using the 

observed densities to those calculated using the extrapolated densities. 

This generates a correction factor 8 where 

= {<:F'(r' ,e' )>8 1 calculated using observed densities ) 
8 log\<31(r' ,8')>8 1 calculated using extrapolated densities 

= log 1 - log , • (
<&W'(r' ,e ')>8 1 ) (<.'F'(e ,8' )>8 1

) 

;;;o observed :!J:o actual 
(155) 

Only those photographs for which the densities in the linear regime were 

clearly parabolic were used; this insures that the extrapolation is rea-

sonable. Also, only those photographs taken with no MBBA in the cavity 

could be used; the MBBA introduces changes in the cavity field distribu-

tion. The various 8's determined by the photographs satisfying these 

criteria are plotted in Fig. 64 as a function of observed log(<3'(r', 

8 1 )>8'~'). A hand-drawn average is shown as well. This average correc
o 

tion factor can then be used with Eq. (155) to determine actual film 

plane fluences from the observed fluences for all of the photographs. 

Note that the average 8 is still a function of the observed fluences, 

the averaging being only over the various photographs used to determine 
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We now have accomplished the first of the three tasks planned for 

this section. Knowing the actual fluences at the film plane, we must 

analyze these fluences to determine mode sizes at the film plane. This 

procedure for data taken with no MBBA in the cavity is straightforward. 

Since the mode structure is predominantly TE , we expect a Gaussian 
00 

shape for the fluence (Eq. (154)). This is indeed what we find. The 

width of this Gaussian distribution can be seen in Fig. 65 as a function 

of pellicle position. Error bars indicate a relatively poorer fit to a 

Gaussian so that the width could not be as accurately determined. In 

displaying Fig. 65, we arranged the pellicle positions to correspond to 

what an observer on a photon would see as the photon travelled from the 

pinhole to the 100% mirror and back to the pinhole. Essentially, we 

have unfolded the cavity for display purposes. 

The data when MBBA is present in the cavity is slightly more compli-

cated. The bright central region can be fitted quite well by a Gaussian 

shape. Likewise, the outer edge of the recorded data can be fitted by a 

Gaussian, though one with a different width than for the central region. 

The data between these areas does not appear to fit any simple function. 

These different regions are portrayed schematically in Fig. 66. Figure 

67 corresponds to Fig. 65 and displays the widths for the two Gaussian 

components as a function of pellicle position. 

The last task for this section is the determination of cavity mode 

size from the measured film plane mode sizes (Figs. 65 and 67). The 

propagation of Gaussian modes was discussed in Chapter IIE (Fig. 14 and 

Eqs. (80)-(84)). We will use the theory presented there to calculate 

how a Gaussian beam with a Gaussian beam parameter 
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R 
c 

- i 
A 

2 
1TnW 

c 

(155) 

in the cavity will change by the time it reaches the film plane. The 

subscript c refers to the laser cavity, A refers to the wavelength of 

the light, n refers to the index of refraction of the propagation medium, 

and R and w refer to the beam radius of curvature and beam size, as 
c c 

defined in Fig. 14. After leaving the cavity (reflected out by the pel-

licle), the beam propagates through a
1 

em till it reaches a lens of fo

cal length f em, passes through the lens and propagates a distance d
2 

em 

until it impinges on the film. The ABCD matrices for these steps are 

given in Eq. (84). Applying these matrices to the Gaussian beam parame-

ter qc in the cavity, we obtain the Gaussian beam parameter qf at the 

film. 

qf "" [~ :zJ[- ~ ~]!~ dl] 
1 (qc) 

[ d2 dl dld2] 1 - + d ---2 f 
(156) - 1 - dfl (qc). 

f 1 

At this point, if we knew both wf and Rf, the beam size and beam radius 

of curvature at the film plane, we could invert Eq. (156) and solve for 

qc. Unfortunately, the film only measures w f. We need more information 

to uniquely determine the q • 
c 

This information can come from the relationship between the q at 
c 

various points in the cavity. Since we are measuring the travelling wave 

component, the qc must obey the equations for propagation of a Gaussian 

beam inside the cavity. We establish the notation 
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q (z) = q at position z 
c c 

q (z + 6z) = q at position z + 6z 
c c 

(157) 

The q (z) and q (z + ~z) must be related by 
c c 

[
1 6z] q (z + ~z) = (q (z)). 

c 0 1 c 
(158) 

We can combine Eqs. (156)-(158) to get 

(159) 

where 

(160) 

We have expressed qf in terms of qc' rather than the inverse, because 

the real part of 1/qf = 1/Rf is not kno\vn. However, we can use Eq. (159) 

to solve for wf(z + 6z) in terms of w (z) and R (z) for various values of 
c c 

~z. This enables us to iterate over possible values for w (z) and R (z) 
c c 
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to obtain the best least squares fit of Eq. (159) to the measured wf(z + 

6z), and thereby determine thew (z) and R (z). Using Eqs. (156) and 
c c 

(159) we have: 

= wc(z){[(l- d2/f) + D(6z)/Rc(z)]
2 

+ A 2D2 (6z)/~2n2w~(z)}~. 

(161) 

In doing the least squares fit of Eq. (161) to the measured wf(z + 6z), 

it is useful to have a starting value for w (z) and R (z). We obtain 
c c 

such a starting value by inverting Eq. (161) and solving the resulting 

equation for two of the measured wf(z + 6z). The procedure involved is 

straightforward and algebraically tedious. Since no new information or 

knowledge is gainged in doing the calculation, we skip the intermediate 

steps and present directly the solutions. 

z1 ) 2w~(z1 )/!D(O)w~(z2 ) + D(z2 - z1 )w~(z1 ) 
2 2 ~ A2(1- d2/f)4(z2- z1)2l 

± (D(O) + D(z2 - z1)) wf(z1)wf(z2) 2 2 
~ n 
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z
1

,z
2 

are the cavity positions corresponding to the measured wf's. 

(162) 

Of course, when we do the fitting, we use the physical values for d
1

,d
2

, 

f: 

d
2 

= 16.5 em 

f "" 5 em. (163) 

The results for w and R can be seen in Figs. 68 and 69. We use the 
c c 

same organization of the data as in Figs. 65 and 67, that is to day, the 

abscissa represents the different pellicle positions and the ordinant 

represents either w or R • The theoretical values of wf(z) calculated 
c c 

using these values of w and R and Eq. (161) is shown as a solid line 
c c 

on Fig. 65. In our solution for w and R , we imposed the restriction 
c c 

w(+) (mirror) "" w(-)(mirror) 
c c 

(+) (-) 
2 (mirror) "' ; (mirror) - 10 m (164) 

R c c 

which accounts for the action of a mirror on the Gaussian mode. The 

superscript (-) refers to parameters just before reflection from the 

mirror, while the superscript (+) refers to parameters just after reflec-

tion. The mirror had a radius of curvature of 10 m. 

The data for the cavity with l,ffiBA present (Fig. 67) is treated in 



the same manner as when no ~fBBA is present. Each of the two components 

shown in Fig, 67 are treated independently. The procedure described is 

applied to both of these Gaussians, to determine their size in the cav~ 

ity rather than at the film plane. In addition to Eq. (164), we also im-

pose the restriction that the MBBA cell must produce the same effect re-

gardless of the travelling wave component being fitted. (The }ffiBA cell 

effects are determined by the total field present, not just one of the 

travelling wave components.) Aside from this, the fitting procedure is 

exactly like that described above and the results for w and R can be 
c c 

seen in Figs. 68-70. The theoretical values for wf(z) calculated with 

these values of w and R and Eq. (161) is shown as a solid line on Fig. 
c c 

67. It should be explained that the fitted values of w and R for the c c 

larger of the two Gaussian compoents present when MBBA is present turned 

out to be identical to those values of w and R for the single Gaussian 
c c 

component present when no MBBA was in the cavity. 

Having determined the cavity mode size, we return to the final piece 

of data reduction that remains. This consists of analyzing the inter-

cepts for Fig. 61 as alluded to earlier. Originally, when we performed 

the experiment, only passing attention was given to the exact pellicle 

orientation. Since we planned to fit the photographic densities to a 

Gaussian mode, the exact reflectivity of the pellicle was not of major 

importance. This moderate attention given to pellicle orientation was 

enough to insure constant orientation for each of the sets {CD , (2) , Q)} , 

{ ® ' G) • ® } • { rn . [2] • (] } • and { [£il • [3] • riD } • where the numbers refer 

to possible pellicle positions, the circles to one of the pellicle ori-

entations, the squares to the other orientation. The effort, however, 

was insufficient to insure constant orientation between sets. The pur-
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pose of this last piece of data analysis is to determine the pellicle 

reflectivities for each of these sets. 

Using Eq. (152), we can solve for Brthe energy transport from the 

camera to the film 

yC~' (D (3) 
Br "" 1 mJo exp in~ - (165) 

where D. t is the on axis densitometer reading for E = 1 mJ and other 
~n 

values are as defined in Eq. (152). We used the previously determined val~ 

ues for a (115 ,4 densitomer units) and (3 (3 densitometer units). Using 

the Fresnel equations for reflection from a pellicle with n = 1.5 and as~ 

suming that there is no loss at the lens, we have: 

(166) 

where 8 is the pellicle orientation with respect to the cavity axis. 

Now, if we assume that the maximal fluctuation of this angle 8 is sym-

metrical about 8 = 45°, the nominal value, we have 

$' = 0.2 mJ/cm2 
0 

(167) 

and values for Brand 8 as indicated in Table 3. In deriving Table 3, 

we have used the value for C' (Eq. (151)) 

C' i 2'IT ioo §' (r, 8) 
~--"--"---'-- r d r de 
$' (r = 0) 

0 0 

2'IT 00 2 2 
= J[ J( e-2r /w rdrde cont'd 
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2 
~w 

2 

where w is the beam radius at the film plane. 

H. Conclusion 

This is the end of the data chapter. We have described the data 

taken and the procedure used to obtain this data. Wherever there was 

any analysis distinct from the mechanics of the self focusing effect, we 

have carried out such analysis here to simplify and clarify the analysis 

chpater, which follows. Besides, that type of data reduction properly 

belongs in the data chapter. In the following chapter (VI), the data 

presented here will be analyzed, and we will discuss how this data sup-

ports our proposed model, both qualitatively and quantitatively. 
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Figure Captions 

Table 3. Pellicale reflectivities and orientation. 

Fig. 50. Basic experimental set up. 

Fig. 51. Cavity mode size vs. MBBA cell length as measured by a burn 

spot on polaroid film. 

Fig. 52. Time dependence of laser output power for various MBBA sample 

lengths. 

Fig. 53. (a)-(g) show time dependence of laser output power for various 

MBBA temperatures. (h) shows cavity mode size as measured by 

a burn spot on polaroid film for these temperatures. 

Fig. 54. Blow-up of the experimental area from Fig. 50, used for mea

suring cavity power vs. time for different regions of the beam 

cross section. 

Fig, 55. Relative pinhole positions with respect to the total beam size 

for set up of Fig. 54. 

Fig. 56. Cavity power vs. time for different elements of the beam cross 

section. MBBA temperature = 50°C. 

Fig. 57. Blow-up of the experimental area from Fig. 50, used for measur

ing the spatial distribution of cavity fields. 

Fig. 58. Computer recreation of the density profile on a picture taken 

of cavity fields. (No MBBA) 

Fig. 59. Computer recreation of the densit~ profile on a picture taken 

of cavity fields. (MBBA temperature = 50°C) 

Fig. 60. Typical film response curve for Kodak Pan-X film. 

Fig. 61. Least squares fit to determine conversion constants for con

verting densitometer readings to fluences. 

Fig. 62. Film plane fluence as a function of position on the fim (cor-
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responds to data of Fig, 58). No MBBA is present. 

Fig. 63. Film plane fluence as a function of position on the film (cor~ 

responds to data of Fig. 59). MBBA temperature= 50°C, 

Fig. 64, Determination of the correction factor o for the toe of the 

film response curve. 

Fig, 65. Gaussian widths of the film plane fluences as a function of 

pellicle position. No 11BBA. 

Fig. 66. Origin of the two Gaussian widths seen with MBBA present in 

the cavity. 

Fig. 67. Guassian widths of film plane fluences as a function of pelli~ 

cle position. MBBA temperature = 50°C. 

Fig. 68. Gaussian widths of cavity modes as a function of cavity posi~ 

tion. Both the case with MBBA and the case with no MBBA are 

shown. 

Fig. 69. Wavefront radius of curvature for the cavity mode as a function 

of cavity position. Results apply to both the case with no 

MBBA in the cavity and to the larger component present with 

MBBA in the cacity. 

Fig. 70. Wavefront radius of curvature for the cavity mode as a function 

of cavity position. Results apply to the smaller component 

present with MBBA in the cavity. 
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Set :Y e 

{CD , (2) ' Q)} .8% 49" 

{® 'G) '®} 2.1% 43" 

{rn , rn , QJ} 2.6% 41" 

{G) ' [S], ffi]} 2.5% 42" 

Table 3 ~ Pellicle reflectivities and orientation. 
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Figure 55 
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Figure 61 
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Figure 62 
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Figure 63 
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Figure 67 
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Figure 69 
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VI. SELF FOCUSING - COMPARISON OF DATA WITH PROPOSED MODEL 

A. Qualitative Discussion 

We start this chapter with some guidelines that must be followed in 

treating some of the data. Recall that as a crude measure of cavity mode 

size, we measured the size of the burn pattern on polaroid film, gener

ated by placing exposed polaroid film in the beam path. This procedure 

measures the area of the beam for which the intensity exceeds the thres

hold for burning the film. There is no reason to expect that the size 

of this spot will have apriori any specific relationship to the mode size, 

only that changes in mode size will be seen as a similar (qualitatively) 

change in the size of the burn spot. Thus, we must use caution to use 

such data only for qualitative comparisons, not for quantitative ones. 

The other precaution that must be used it to keep in mind that the size 

of the burn spot also depends on incident intensity, as seen in Fig. 71, 

where we sketch how increasing intensity can increase the size of the 

burn spot even when the Gaussian beam waist is unchanged. Thus, care 

must be taken to distinguish between intensity induced and cavity mode 

size induced changes in the size of the burn spot. 

The data seen in Fig. 51 is an example of data taken by measuring 

the size of the burn spot. The data can be qualitatively explained by 

our proposed model. As the MBBA sample length is increased from 0, the 

size of the spot shrinks. This shrinkage continues until a sample 

length of 1 em is reached, whereupon the spot size begins to grow as the 

sample length continues to increase. Somewhere between a sample length 

of 2 em and one of 5 em, this trend again reverses, and the spot size 

shrinks. This behavior is consistent with our model if we assume the 
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various regimes to be as indicated on Fig. 51. For the energy limiter 

regime, the model predicts the cavity configuration will shift from near 

plane parallel to confocal as the sample length increases; since the ca~ 

vity mode size is smallest for a confocal configuration, this is consist~ 

ent with the data. For the transition regime, the model predicts a ca~ 

vity configuration that shifts from confocal away from confocal and back 

' to confocal as the sample length increases. This would cause an initial 

increase in mode size followed by a decrease to that seen for the confo-

cal configuration. Again, this is consistent with the data, although 

not enough data exists to verify the eventual decrease. For the indue-

ible loss regime, the model predicts both an increase cavity mode size 

(as cavity configuration shifts away from confocal) and a reduction in 

cavity intensities due to the inducible loss. The increase in mode size 

is limited, of course, by the presence of the pinhole, to the size seen 

when no MBBA is present. • The reduction in cavity intensities caus,es a 

reduction in burn spot size. Eventually , since the mode size increase 

is limited, we expect this intensity caused reduction to predominate and 

the spot size to shrink. This is consistent with the one data point we 

have for this regime. 

In Fig. 52, we have plotted the power as a function of time for each 

of the various regimes (no MBBA, energy limiter, transition, and indue-

ible loss). Again, we see behavior as predicted by the model. For the 

energy limiter regime, there is a large reduction in total output power 

though the pulse length is shorter. This is consistent with a reduction 

in lasing volume (which accounts for the lower power) and an increase in 

cavity feedback to the volume which does lase (which accounts for the 

shorter pulse). A weak second pulse is seen, confirming that energy ex-



ists in the rod which can be released as the cavity configuration relaxes 

from confocal back towards plane parallel. This occurs as the cavity 

intensity is decreasing. 

The transition regime (~ = 1.75 em) shows a similar behavior. The 

primary peak shows very little change from the energy limiter regime. 

The secondary peak is considerably larger though, almost as large as the 

primary peak, while the separation between the primary and secondary 

peaks is smaller. From Fig. 49, we would expect just this behavior. 

The cavity configurations for the initial portions of the pulse are quite 

similar to both regimes discussed so far. Thus, we expect the similar

ity in the primary peaks. The difference occurs after the cavity config

uration has reached the confocal configuration. For the transition re

gime, the configuration continues to evolve past confocal towards concen

tric, with an attendant increase in mode size. This occurs near the peak 

of cavity intensity. The increased feedback, provided by this increased 

mode size, to the volume of active material previously inhibited from 

lasing, thus also occurs near the peak of cavity intensity rather than 

after this intensity has fallen significantly, as is the case for the 

energy limiter regime. This leads to both a larger second peak (due to 

larger feedback) and one that occurs more quickly (since this feedback 

starts earlier in the pulse) than for the energy limiter regime. 

For the inducible loss regime, we expect behavior similar to that 

studied in Chapter III for SIER inducible loss. The intensity should be 

reduced, and there should be an accompanying stretching of the pulse. 

This can quite clearly be seen in Fig. 52, where the peak power is sub

stantially reduced, even from the depressed levels of the energy limiter 

and transition regimes, and the pulse length is noticeably longer (200 
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nsec vs. 40 nsec). For long enough cell lengths, we expect the indue~ 

ible loss regime to change into the variable threshold regime where las

ing action is expected to require substantially higher threshold ener

gies if it is seen at all. We use a 10 em MBBA sample and found no las

ing action up to the pump energy limits imposed by our flashlamps. 

The size of the induced nonlinear refractive index dn for our pulse 

lengths is expected to depend only weakly on temperature because of the 

transient nature of this response (Fig. 29 and Cahpter IV). The behav

ior of the first peak on Figs. 53b-g show that this is indeed true. The 

first peak on each of these figures depends on the dynamics of the cav

ity configuration change from plane parallel to confocal. The similarity 

in the shape of this peak for all the sample temperatures used, indicates 

that the induced nonlinear refractive indices must be similar for all 

the temperatures (and thus only weakly temperature dependent). 

The relaxation time will depend strongly on temperature, and as ex

plained in Chapter IV, this dependence will manifest itself, in Figs. 

53b-g, as different behavior of the second peak at different temperatures. 

The relaxation time controls the relaxation of the cavity configuration 

from confocal back to plane parallel. This affects the feedback to the 

volume of active material previously inhibited from lasing and thereby 

affects the strength of the second peak. \~e expect a small second peak 

when the relaxation time is grea.ter than the pulse length, and a large 

second peak when the relaxation time is less than the pulse length. For 

a pulse length of - 30 nsec, using Fig. 4 or Table 1, we expect the di

viding point to be at a temperature 55°C-60°C (22 nsec - 30 nsec response 

time). This behavior is clearly seen in Fig. 53b-g, where the second 

peak grows as temperature increases (and relaxation time decreases). 
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The second peak becomes noticeably larger for temperature above 60°C, 

as expected. 

The data of Fig. 53h provides additional corroboration. In discus~ 

sing this data, we will use the following terminology. When }ffiBA is pre

sent in the cavity, the burn spot exhibits a central region of high in

tensity surrounded by a region of much lower intensity. We will refer 

to the bright central area of the burn spot as the "central peak." This 

region corresponds to energy released near the first or primary peak of 

laser output. We will refer to the surrounding area as the "halo. 11 

This region corresponds to energy released before or after the primary 

peak and includes energy released in the secondary peak. When MBBA is 

absent from the cavity, the burn spot exhibits only one region, this re

gion having the brightness of the "central peak" but the size of the "ha

lo." This is consistent with the identification of the central peak 

with energy released near the the first peak, when the cavity configura

tion is near confocal and the cavity mode is considerably smaller than 

when no MBBA is present, and the cavity mode is near plane parallel. 

The constant size of the central peak, as measured by the lower set 

of points in Fig. 53h, together with the temperature insensitivity of the 

primary peaks in Figs. 53b-g, indicates that the cavity mode size at the 

peak is also only weakly dependent on temperature. This reinforces the 

fact that temperature changes in the MBBA affect the laser output primar

ily via a change in relaxation time for the MBBA (which in turn affects 

primarily the second peak). The increasing spot size with increasing 

temperature for the upper set of points in Fig. 53h, is consistent with 

the increased energy in the secondary peak as temperature increases. 

It is impossible to evaluate how much of the increase in size of the 
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burn spot is due to the increased energy in the second spot, so no infer~ 

ences regarding mode size for this secondary peak should be made. (Re-

call, that spot size depends on both mode size and incident intensity.) 

Based on the data of Fig. 53, we decided to use a sample tempera-

ture of 50°C for the remainder of the data yet to be taken. It was felt 

that the analysis would be most fruitful when the complications posed by 

' the presence of the second peak were minimized. The choice of 50°C is 

well above the transition point (41.6°C), which avoids the problem of 

increased scattering loss near the phase transition, and at this tempera-

ture (50°C) the secondary peak is present only weakly. 

Confidence in our model~ especially in the role that relaxation time 

plays, is strengthened by a clear-cut demonstration that the second peak 

indeed consists of energy released from the "halo" region. The data of 

Fig. 56 provides this demonstration. (Data is described in Section IVE.) 

As the pinhole is swept outward from the center (the progression 56a ~ 

56b ~ 56c), the relative size of the second peak, for the fields trans-

mitted through the pinhole, grows with respect to the primary peak. The 

relative importance of the second peak with respect to the entire output 

is seen in Fig. 56d. Comparing Figs. 56a and 56c to Fig. 56d shows that 

very little energy from the second peak gets through a pinhole on axis, 

while for a pinhole far off axis a large amount of the energy from the 

second peak passes. This supports the model which predicts that the se-

cond peak arises from energy released from the "halo11 region. 

The position of the peak in Fig. 56d is indicated by an arrow on 

Figs. 56a-56c. The first peak in Fig. 56a coincides with the peak in 

laser output. The first peak of Figs. 56b and 56c precede the peak in 

laser output by 8 nsec and 12 nsec respectively. This indicates initial-



ly increasing fields for positions b and c of Fig. 55, which peak and 

then decrease as a result of the evolution of the cavity configuration 

towards a confocal configuration. In the course of the evolution, the 

natural cavity mode size decreases, inhibiting portions of the laser me

dium. As the portion of the laser medium contributing to the energy pas~ 

sing through positions b and c stops lasing, we expect to see a corre~ 

sponding decrease in the energy passing through a pinhole at these posi~ 

tions. This decrease should be seen first at the edges (position c) and 

work towards the center as the configuration evolves. Indeed, we see 

that the decrease in power starts for position c, 12 nsec before the peak 

in output power, while at position b this decrease starts only 8 nsec 

before this peak. 

The decrease above should be greatest at the peak of laser output 

as that should correspond to the smallest mode size and thus greatest in

duced loss for the outer portions of the laser rod (the inhibited region). 

For short relaxation times, we expect the power at positions b and c to 

increase again as the cavity configuration relaxes back to plane paral

lel. For long relaxation times (as compared to pulse widths) we expect 

this relaxation to be much slower than the pulse duration so that the 

power at positions b anc c should remain relatively constant or decrease 

further as the cavity intensities drop. This latter behavior is what we 

expect for Fig. 56 as the response time of MBBA at 50°C is - 65 nsec 

which is considerably longer than the pulse duration. From Fig. 56b and 

56c we see the behavior is as expected. 

There were two modes discernible from the photographs taken of the 

cavity fields (Fig. 68). One mode, the smaller, contained energy emitted 

near the peak of laser output and was noticeably affected by the MBBA. 
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The other larger mode contained energy emitted near the edge of the las~ 

ing volume (far off axis). This larger mode is apparently unaffected by 

the presence of the 11BBA. The behavior of the larger mode, as measured 

by beam radius w and curvature R, is identical to the behavior of the 

single mode present when no MBBA is in the cavity, though the energy in 

the mode is greatly reduced when compared to that case. Thus, the larger 

component must consist primarily of energy released before the !1BBA can 

substantially change the cavity configuration, that is for the initial 

portion of the pulse when the intensities are still small and the HBBA 

has not yet started to respond. This accounts for both the low energy 

content and the similarity to the mode seen when no MBBA is in the ca~ 

vity, as well as supporting our model. The behavior of the smaller com-

ponent clearly shows the focusing nature of the MBBA (see Fig. 68). The 

precise nature of the focusing will be examined in the quantitative dis-

cussion of section VIb, which follows this section. 

Using the data of Figs. 53 and 68, we can determine the on axis ca-

vity intensity. We choose to evaluate this intensity at the pinhole. 

drd~ (165) 

where P (t) is the output power, w± is the cavity mode size at the pin~ out _ 

hole for the two travelling components, E±(r = 0) is the on axis cavity 

field for these components, and y is the ratio of output to cavity en~ 

ergy. We have explicitly used the fact that energy in the cavity must 

be in one of the two modes. Now, using the data shown in Table 3 for the 

pellicle orientation and assuming that the major loss between the (+) 

and (-) travelling wave components is due to the pellicle (scattering 



loss in the MBBA is small, the MBBA cell windows are anti-reflection 

coated, and the 10M mirror has 100% reflectivity), the travelling wave 

component travelling towards the mirror will have more energy than the 

returning component. 

Energy in backwards component = .966 x energy in forward component. 

(169) 

Using Eqs. (168) and (169), we can express the power in terms of either 

E+ or E • We then obtain 

2P (t) 
2 2 

IE 1
2 8rr out w+ + w_ 
=~ 

+ c YTI 2 2 
w+(w+- w_) (1.966) 

2P t(t) 
2 2 

IEJ
2 81T w+ + w_ ou 
=~ 

c YTI _(w+ + w_) (2.035) 

We can combine these expressions to obtain 

=::pout (t) (_!_ + _!_) . 
Y1T 2 2 

w+ w_ 

(170) 

Using the value for w± from Fig. 68, and Pout(t) from Fig. 53, in Eq. 

(169) we obtain Fig. 72. Only the first peak is plotted as we have seen 

that the second peak does not contribute significantly to the on axis 

intensity. 

Figure 72 clearly shows the higher axial intensity and shorter pulse 

that is expected when MBBA is in the cavity (as compared to the axial 

intensity and pulse length with no MBBA present). The larger feedback 
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to the axial volume of lasing material is responsible. With the larger 

feedback, this axial volume releases its stored energy more quickly, ac-

counting for both the increased intensity and shorter pulse. Naturally, 

the on axis fluence (integrated intensity with respect to time) remains 

the same regardless of the presence of the MBBA. The fluence is deter~ 

mined by the total energy stored in the axial lasing volume, not by the 

dynamics of the energy release. 

B. Quantitative Discussion 

Our discussion for this section, though quantitative, follows a 

self consistent treatment. As mentioned earlier, it was unfeasible to 

perfom the fullblown computer calculation necessary to determine an abso~ 

lute theoretical behavior. Instead we calculate the induced on axis 

change in refractive index on(O) by two different techniques, showing 

that the results are self consistent. First we use the observed spatial 

distribution of cavity fields together with observed output power to de-

termine on axis cavity intensity. This was done in the previous section 

(Eq. (170)). From this, we can use the material properties of !1BBA to 

obtain an expected on(O). We call this the theoretical value. Second, 

we can use the spatial distribution of the cavity fields together with 

Gaussian optics to calculate what on(O) is necessary to produce the ob-

served change in spatial distribution after passage through the MBBA 

cell. This value of on(O) we call the experimental value. As we shall 

-6 see, the theoretical value (9.1 x 10 ) and the experimental value (9.2 

-6 ± 1.5 x 10 ) agree quite well, showing that our model is quantitatively 

correct, at least at this self consistent level. 

In Chapter II, we derived a theoretical expression for the induced 
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change in the index of refraction on axis of MBBA, on(O), as a function 

of cavity fields (Eqs. (55), (61), and (62)). 

2 2 
~t/TM 4b 'M{ 

e e 1 (171) 

where various terms are defined in Eqs. (38) and (54). We can use Eq. 

(170) in Eq. (171) to obtain directly the theoretical on(O) at the peak 

of laser output (t = 0) 

on(O) = 9.1 X 10-6 (theoretical). 

The maximal on(O) does not occur at t = 0 but at t where 

which occurs for 

don(O) = 0 dt 

_E_(l + erfrbt - -
1 J' = exp(-rbt - _l ]

2
). 

2bTM L 2bTM v L 2bTM 

(172) 

This must be solved numerically using the experimentally observed b = 

(15 nsec)-1 • With this value forb, the maximal value of on(O) is given 

by 

t = 16.5 nsec. (173) 
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Using the experimentally measured values for w± at the ~ffiBA cell (Fig. 

68), and P from Fig. 53, Eq. (173) can be evaluated using I& !2 = 
out o 

(8TI/c)I and Eq. (170) to give 

on(O) 
max 

-5 = 1.5 x 10 (theoretical). (174) 

In Chapter II, we also obtained an expression for how the ~BA sam-

ple will affect the cavity fields. In the weak self focusing limit, we 

were able to express this as an [ABCD] matrix indicated in Eq. (67). 

This allows us to use Gaussian optics to evaluate from experimental data, 

what on(O) is needed to obtain this observed behavior. To simplify our 

notation, we define a parameter 

lJ! = ~~on(O) 
w n 

0 

(175) 

where n = n + on(O) and w is the size of the induced Gaussian on(r). 
0 

Then Eq. (67) becomes: 

[ABCD] = [ coslJ!~ 
-lJ!simjJQ, 

(176) 

where Q, is the sample length of ~BA. The area indicated as ~BA cell 

on Fig. 57 is actually as shown in Fig. 73. We define a "d" to indicate 

the optically equivalent length of air replacing the air + window as in-

dicated on Fig. 73. Then for the region shown in Fig. 73, we have: 

i sinlJ!Q,] [1 

coslJ!~ 0 
(177) 
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where i and o refer to the Gaussian beam parameter q entering or leaving 

this region. For weak 1jJ < 1 

2 terms to 1jJ • 

we expand the cosljJ~ and sinljJ~ keeping 
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1 
1jl2Q,2 

dn 1J;
2Q, 2d(l - v?2Q,z) + ; ( Q,- w:Q,3) - d2n 1jl2Q, --2--

0 0 
qo "" 0 q .. 

2 1jl2Q,2 2 l 

-ljl R.n 1 ---- dn 1jJ .Q. 
0 2 0 (178) 

It is now merely a matter of algebra to solve for 1J;
2 using the experi-

mentally determined q. and q (Figs. 68-70). We have 
l 0 

which gives for 

/..2 ) 2 2 2 - R.no 
'IT w.w 

l 
0 (180) 

where thew. and R. are related to the q. by Eq. (80). Using val-
l,o 1,0 1,0 

ues from Fig. 68 and 70, we obtain: 

(181) 

where the error reflects the disagreement between values obtained for 1jJ 

using the two travelling wave components. 

We can now use Eq. (175) to evaluate on(O) except for the fact that 

w in Eq. (175) changes during the pulse history. Early in the pulse the 

large component is prevalent sow is large,later in the pulse the small 

component is prevalent so w is small. In Eq. (175) we must be careful 

to use the properly averaged value of w. It is the determination of 

this average w that introduces the largest uncertainty into the calcula-

tion. We know from Fig. 56 that the large component is prevalent until 



12 nsec before the peak. From Eq. (173) we know that the contribution 

from the large mode to on(O) will peak 16 nsec after the energy in the 

mode peaks. This means that the 8n(O) induced by the large mode will 

in fact probably dominate the total induced 8n(O) at the time t = 0 

(peak of laser output). 

We can estimate the contribution of the large mode to the total 

8n(O) by using Eq. (171) at time t' = 12 nsec (laser peak occurs 12 nsec 

after large mode peak) and replacing 

b = (15 nsec)-l 

t 1 
"" 12 nsec (182) 

to account for the lower fields present 12 nsec before the peak. We ob

tain the result that the proper averaging of 1/w2 is given by 

1 > 1 1 <2 = .84(2 > + .16(2 > . (183) 
w w w large mode small mode 

Using values for w indicated by Fig. 68 with Eqs. (175) and (181), we 

have on(O) at peak of laser output as: 

on(O) = 9.2 ± 1.5 X 10-6 experimental (184) 

where the indicated error arises almost entirely from the uncertainties 

involved in the determination of <l/w2
>. We have used an error of 50% 
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in the relative weight for the smaller mode in Eq. (183) as a measure of 

this uncertainty. This leads to the error used for Eq. (184). The act-

ual error most likely is less than this, but without more detailed know-

ledge of how w changes at different times in the pulse, there is no jus-

tification to claim any smaller errors than provided by this worst case 

estimate. 

The experimental value in Eq. (184) can be compared with the theo-

retical value calculated directly from Eq. (172). The close agreement 

between the theoretical and experimental values shows that the proposed 

model is quantitatively self~consistent. 

In addition to calculating the induced on, we can also calculate 

the expected divergence of the laser output. This was not measured 

quantitatively by experiment, but the results of the calculation clearly 

show the improved output characteristics with MBBA. As discussed in 

Chapter III, when calculating spatial behavior of the laser cavity 

fields, the laser rod isusuallyreplaced by an equivalent thin lens. 

We will follow this procedure. The focal length of this equivalent lens 

will be called f, and the lens will be located at the center of the ruby 

rod ~l = 22 em from the pinhole and ~2 = 32 em from the output etalon. 

We deal with only the smaller mode, predominant at peak of laser output, 

and thus can assume a single mode Gaussian in the cavity. Using the 

standard technique of [ABCD] matrices, we can write the Gaussian beam 

parameter qf for the travelling wave component returning to the pinhole 

in terms of the beam parameter q. for the travelling wave compoment just 
~ 

leaving the pinhole. 
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[ 

1 - 2L/f 

= -(2/f)(l- ~2/f) 

L "" Q,l + Q,2 -
Q,1Q,2 

2 (1 - Q,l/f)LJ 
q, 

1 - 2L/f ~ 

(185) 

Using the definition for the Gaussian beam parameter (Eq. (80)), we can 

express Eq, (185) in terms of the measured w. f and R. f (Figs. 68-70): 
~' ~' 

(1- 2L/f) + 4L(l- 2L/f)(l- £ 1/f)~ + 
~ 

(186) 

It is now easy to iterate over value of f to solve Eq. (186) for f given 

the measured values of wi,f and Ri,f• We obtain 

f 35 em [no MBBA] 

f = 64 em [with MBBA]. (187) 

With f determined by Eq. (187), we write directly the Gaussian beam par-

ameter q for laser output as a function of distance ~ from the cavity, 
0 

and the beam parameter at the pinhole q.: 
~ 
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(Q,2 + 11)/f 

-1/f 
L'] q. 
1 ]. 

Equation (188) can be solved for the physically relevant w and 
0 

1 
R 

0 

(-1/f)(l- (t
2 

+ 11)/f) + (1- 2L/f);. + (1 ~ t 1/f)LX 
]. 

+ 2(1 - (t2 + 11)/f)L ~ + 
]. 

R : 
0 

(188) 

iA 

(189) 

The solution to Eq. (189) can be seen in Fig. 74. The improvement in 

divergence of the output is quite clear, with a reduction from 1.6 mrad 

to only 0.9 mrad. The behavior predicted by Fig. 74 and Eq. (189) was 

verified qualitatively by experiment. This verification process consist-

ed merely of placing polaroid film in the beam path, and then moving 

this film further from the cavity on successive shots. The behavior 

predicted by Fig. 74 was clearly seen both with and without MBBA. 
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Figure Captions 

Fig. 71. Sketch of how increased fluence can increase size of burn spot 

on polaroid film even if there is no change in Gaussian mode 

size. 

Fig. 72. On axis cavity intensity vs. time measured at the pinhole. 

Fi~. 73. Blow up of region on Fig. 57 labelled MBBA cell. 

Fig. 74. Output divergence of laser with and without MBBA present. 

Beam mode size is plotted vs. distance from the laser. 
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Figure 71 
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Figure 72 
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VII. CONCLUSIONS 

We have presented a quantitative model for intracavity SIER induced 

losses. The theory remains valid for the entire range of material re~ 

spouse time from quasi-steady state to fully transient. We explicitly 

incorporate the Gaussian spatial distribution of the cavity mode, thus 

improving on previous calculations which assume a plane wave cavity mode. 

The two treatments give substantially differing results for a saturable 

dye Q-switched laser, indicating the importance of properly treating the 

cavity mode. A thorough study was done both theoretically and experi

mentally for transient SIER inducible loss, with excellent agreement. 

We also examined theoretically, but not experimentally, the quasi-steady 

state SIER indicuble loss. The basic onclusions can be summarized: 

1) SIER inducible loss can be used for pulse shaping. 

2) Best pulse shaping occurs for the quasi-steady state limit. 

3) Self focusing effects are non-negligible and should be carefully 

studied, 

The details can be found in Chapter III. Though our studies indicate 

that the cleanest pulse shaping occurs at the quasi-steady state limit, 

the lack of experimental data makes it impossible to anticipate whether 

the self focusing effects will interfere with the SIER inducible loss 

process. Thus, the conclusion 2) is dependent on the self focusing in 

conclusion 3) being sufficiently small. 

The self focusing properties of Kerr liquids in a laser cavity were 

also studied. As mentioned above, these effects play a significant role. 

Our study was primarily experimental, and dealt with transient interca

vity self focusing. A self-consistent quantitative model was developed 
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(to account for the observed behavior). This theory could be extended 

to the quasi~steady state limit, Again, excellent agreement with experi

ment was seen. Again, the basic conclusions can be summarized: 

1) The weak self focusing regime is most useful. 

2) For the weak regime, good mode structure and small output diver

gence is observed. 

3) Best results occur for the fully transient limit. 

In contrast to SIER inducible loss, the transient response is preferable 

for this case. Mild self focusing acts to change the effective cavity 

configuration. This configuration change allows the good mode selection 

of a plane parallel cavity to be combined with the better output charac

teristics of a confocal cavity. The transient response slows the decay 

of the induced cavity configuration allowing maximal use of its benefi

cial effects. 

There remains three questions or studies that should be pursued. 

The SIER inducible loss should be studied experimentally for the quasi

steady state limit. For the transient limit we know that the SIER pro

cess can be set so that the laser operates only in the mild self focus~ 

ing regime of the MBBA, indicating that the SIER process dominates the 

self focusing process. Theoretically, this is true for the quasi~steady 

state limit as well, but needs to be verified experimentally. Second, 

the theories developed for both the processes need to be combined. The 

SIER inducible loss theory treats explicitly the laser dynamics, but 

treats only crudely the spatial features of cavity fields and cavity ele

ments. Conversely, the self focusing theory treats explicitly these spa

tial features, but ignores the dynamics. It would be best if there 

could be developed a combined theory incorporating both the spatial fea-
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tures and the dynamic features. This theory would then allow the treat

ment of SIER inducible loss and self focusing as a combined process~ as 

it logically should be treated. Lastly, the experimental te~hnique for 

measuring cavity fields should be refined. A technique to measure both 

time resolved and spatially resolved data simultaneously is needed. The 

best solution would likely be to sacrifice some spatial resolution and 

use some of the new high resolution, high sensitivity, low response time 

diode arrays in place of photographic film. This would serve the triple 

purpose of eliminating the tedious analysis required for film, providing 

direct input for computer analysis, allowing the real possibility of shot

to-shot averaging, and most important, providing temporal information at 

each diode element. The possibility of shot-to-shot averaging could, to 

a large extent, offset the loss of spatial resolution. 

The techniques and models present in Chapters I-VI have both direct 

and indirect applications. As an indirect application, we see, for ex

ample, the continuation of intracavity self focusing studies as a scaled 

down examination of the self focusing problems in high power lasers. 

Direct study requires both the high power (as the self focusing is very 

weak) and picosecond pulses (because the self focusing process is both 

transient and fast). We avoid these problems by using liquid crystals 

(strong self focusing so moderate power lasers suitable, and long re

sponse time so nsec and longer pulse lengths can be used) with laser dye 

dissolved in the liquid crystal "host" to simulate the action of a Nd: 

Glass laser for example. One could hope to understand the process and 

thus learn how to best build the high power versions. Direct applica

tions, of course, include the use of SIER inducible loss to control la

ser pulse length or self foucisng to improve laser output characteris-
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tics where an external lens would be impractical. We can classify Kerr 

liquids into those having long or short relaxation times and we can clas~ 

sify them into those with large or small nonlinearities. Which Kerr li~ 

quids are best suited for which applications can be seen in Table 4. 

Mode shaping is used to refer to the use of intracavity self focusing to 

improve output characteristics. One entry on Table 4 needs explanation. 

Small on requires a longer sample to achieve a desired effect than a large 

on. The longer sample is much easier to deal with when determining opti

mal sample lengths. Since only weak self focusing is needed, these smal

ler on's are sufficient and preferred. However, this is not to be car~ 

ried to extremes -- obviously on = 0 would do no good at all. How small 

a on is permissible is determined by the output power desired. 
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large on small on 

High power modelling 
long 2nd choice for 1st choice relaxation mode shaping for mode shaping time 2nd choice for 

pulse stretching 

short 1st choice Not suitable 
relaxation for pulse for any of the 

time stretching applications 

Table 4. Table of possible applications of Kerr liquids in laser cavi-

ties based on response time and relative size of the induced 

nonlinear index of refraction. 
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